Bi-modal First Impressions Recognition using Temporally Ordered Deep Audio and Stochastic Visual Features

Arulkumar S., Vismay P., Ashish M., Prashanth B., Anurag M.
Department of Computer Science and Engineering, Indian Institute of Technology Madras, India

Problem setup

ECCV'16

Intuition behind the proposed solution

First impressions

Appearance
Speech
Temporal
Expressions
(Face and Speech
Temporal patterns)

Intuition behind the proposed solution

ECCV'16
ON COMPUTER VISION

Preprocessing - Audio

- The mean (μ) and standard deviation (σ) of spectral Audio feature attributes

ZCR, Energy, Spectral properties(Centroid + Spread + Entropy + Rolloff + Flux), Chroma vector + deviation, MFCCs etc., (in total of 34 feature dimensions)

- Total of 68 dimensions (μ and σ for each of 34 feature dimensions)
- Python library ${ }^{[1]}$ 'pyAudioAnalysis' is used for audio feature extraction

Preprocessing - Video

- The 3D-aligned Face is extracted from the frame(s) of the video

- A state-of-the-art open source tool ${ }^{[1]}$ 'OpenFace' is used for Face extraction

Data selection for the model

Towards Multimodal Deep Neural Network

Divide total frames into N non-overlapping partitions

Randomly select one frame from

Generate 3D
aligned cropped
face images

Divide audio signal into N nonoverlapping partitions

Crop the signal for each partition

Calculate feature vector for each partition

ECCV'16

Stochastic feature selection

- Keeping N = 6

(split the Audio and Video into non-overlapping 6 partitions)

Audio

Visual

68 dimensional feature vector for each of 6 partitions
$=6 \times 68$ feature vectors

For each of 6 non-overlapping partitions, single randomly selected image of $3 \times 112 \times$ 112. ($=6 \times 3 \times 112 \times 112$)

Typically, video length $=\sim 15$ seconds
30 frames $/$ second $=\sim 450$ frames in total $=$ ~75 frames / partitions
$=75^{\wedge} 6$ combinations of selecting frames
(helps in increasing data points \& avoids overfitting)

ECCV'16

non-overlapping partitions of the video (each color represents a diffrent partition)
 Bi-Modal 3D CNN model

non-overlapping partitions of the video (each color represents a diffrent partition)

Generate MFCC features for audio data of each partition

Generate 3d aligned and cropped face images for all the visual frames in each partition

Select one frame from each partition

ECCV'16

ECCV'16

Bi-Modal LSTM model

ECCV'16

Results

Validation phase:

	LSTM model	3D conv. based model
Accuracy	0.913355	0.912473
Extraversion	0.914548	0.915650
Agreableness	0.915749	0.916123
Conscientiousness 0.913594	0.908370	
Neuroticicism	0.909814	0.009931
Openness	0.913069	0.912292

Test phase:

Rank	Team	Accuracy
1	NJU-LAMDA	0.912968
$\mathbf{2}$	evolgen $\left({ }^{*}\right.$ LSTM model $)$	0.912063
3	DCC	0.910933
$\mathbf{4}$	ucas	0.909824
5	BU-NKU	0.909387
6	pandora	0.906275
$\mathbf{7}$	Pilab	0.893602
$\mathbf{8}$	Kaizoku	0.882571

Possible future directions

- Add linguistic feature descriptors along with Audio and Visual features (using speech recognition)?
- Eliminate preprocessing
- of video frames (i.e., to include Background cues)
- of Audio frames (i.e., extract features directly from Audio using CNN-like setup)

