

Bi-modal First Impressions Recognition using Temporally Ordered Deep Audio and Stochastic Visual Features

Arulkumar S., Vismay P., Ashish M., Prashanth B., Anurag M.

Department of Computer Science and Engineering, Indian Institute of Technology Madras, India

Code: https://github.com/InnovArul/first-impressions

Problem setup

Preprocessing - Audio

- The mean(μ) and standard deviation(σ) of spectral Audio feature attributes

ZCR, Energy, Spectral properties(Centroid + Spread + Entropy + Rolloff + Flux), Chroma vector + deviation, MFCCs etc., (in total of 34 feature dimensions)

- Total of 68 dimensions (μ and σ for each of 34 feature dimensions)
- Python library^[1] 'pyAudioAnalysis' is used for audio feature extraction

Preprocessing - Video

 The 3D-aligned Face is extracted from the frame(s) of the video

• A state-of-the-art open source tool^[1] 'OpenFace' is used for Face extraction

Data selection for the model

Stochastic feature selection

• Keeping N = 6

(split the Audio and Video into non-overlapping 6 partitions)

Audio	Visual
68 dimensional feature vector for each of 6 partitions = 6 x 68 feature vectors	For each of 6 non-overlapping partitions, single randomly selected image of 3 x 112 x 112. (= 6 x 3 x 112 x 112) Typically, video length = ~15 seconds 30 frames / second = ~450 frames in total = ~75 frames / partitions = 75^6 combinations of selecting frames (helps in increasing data points & avoids overfitting)

- 1

ECCV'16

Bi-Modal 3D CNN model

Conscientiousness

Agreeableness

1

Openness

E OF TECH

ON COMPUTER VISION

1

EUGUV LO

TEOFTECH

Openness

Select one frame from each partition

Bi-Modal LSTM model

Conscientiousness

Agreeableness

Openness

ECCV'16

ON COMPUTER VISION

-----Audio Data Generate MFCC features for audio data of each partition **Audio Features** of single partition (1 x 68) Linear 68 x 32 1 x 32 All the operations in this box are done parallely for each partition of the . same video. ▼ 1 × 160 LSTM Seq length = 6 Hidden Nodes = 128 . Dropout(0.2) 1 × 128 Linear 128 x 5 + Sigmoid Pooling (avg/max/last) Neuroticism Conscientiousness Agreeableness

Openness

Results

Validation phase:

Test phase:

	LSTM model	3D conv. based model
Accuracy	0.913355	0.912473
Extraversion	0.914548	0.915650
Agreeableness	0.915749	0.916123
Conscientiousness	0.913594	0.908370
Neuroticism	0.909814	0.909931
Openness	0.913069	0.912292

Rank	Team	Accuracy
1	NJU-LAMDA	0.912968
2	evolgen (*LSTM model)	0.912063
3	DCC	0.910933
4	ucas	0.909824
5	BU-NKU	0.909387
6	pandora	0.906275
7	Pilab	0.893602
8	Kaizoku	0.882571

Possible future directions

- Add linguistic feature descriptors along with Audio and Visual features (using speech recognition)?
- Eliminate preprocessing
 - of video frames (i.e., to include Background cues)
 - of Audio frames (i.e., extract features directly from Audio using CNN-like setup)

