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Problem Overview

e Describing content of the video with natural language
sentence.
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Caption: A baseball player hits a baseball.



Earlier Work
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Frame level features to generate captions
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Frame level features

Generating captions for
video not only involves
understanding of visual
and temporal cues.

But also object level
features and interaction of
these objects in
spatio-temporal
dimension.



Recent Works
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Object interactions using GCNs



Recent Works

Transformer
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e Object level information enhances visual encoding.

e But, features extracted using pretrained object detectors.
o May not capture all object categories needed.
o Can introduce bias.



Common Video Captioning Pipeline
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can we make the
model to focus on
local object
regions without
depending on
external object
detectors?
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Common Video Captioning Pipeline
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Architecture
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Co-segmentation branch (CoSB)

Global scene branch (GSB)
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*Spatio-temporal graph for video captioning with knowledge distillation.,Pan et. al CVPR-2020
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Architecture

Co-segmentation branch (CoSB)
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Our Work

Co-segmentation branch (CoSB)
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Our Work - Testing

Global scene branch (GSB)
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Dataset

#Videos Train/Val/Test #Sentences/Video

MSVD 1970 1200/100/670 ~40

MSR-VTT 10000 6513/497/2990 20

Microsoft Video-Description Corpus (MSVD)
Microsoft Research Video-to-Text (MSR-VTT)



CIDEr

Quantitative Results
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We achieve state-of-the-art performance on MSVD and get competitive results on MSRVTT.



Ablations
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Ablation on MSVD dataset
Our complete model gives the best result.



Qualitative Results - Salient Regions (COSAM)

e Better at localizing unusual

objects.
e Our model correctly detects octopus,
which is not usually in object detector

datasets.

GT: Awoman is slicing octopus.
Ours: Awoman is slicing octopus.
STG-KD: Awoman is slicing carrots.



Qualitative Results - Salient Regions (COSAM)

GT: A man is talking about a car. GT: A boy is kicking a soccer ball.
Ours: A man is talking about a car. Ours: A boy is kicking a soccer ball.
STG-KD: A man is talking about a car. STG-KD: A boy kicks a goal.



Qualitative Results - Object descriptors (SRIM)
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Ours: A cartoon creature is talking to a man. Ours: A girl is singing on a stage.
GT: A cartoon with a creature is running at a GT: A girl is singing on a stage
man.



Conclusion

e We proposed an end-to-end network to capture local salient regions in
contrast to using pretrained object detectors.

e \isualizations show that co-segmentation is indeed able to capture salient
regions including tail distribution objects.

e Competitive results on benchmarks without the usage of pretrained object
detectors.

Thank you! ©



