Co-Segmentation Aided Two-Stream Architecture for Video Captioning

Jayesh Vaidya, Arulkumar Subramaniam, Anurag Mittal Department of CSE, IIT-Madras, Chennai, India

Problem Overview

• Describing content of the video with natural language sentence.

Caption: A baseball player hits a baseball.

Earlier Work

[Venugopalan et al. 2014, Venugopalan et al. 2015, Chen et al. 2018, Pei et al. 2019]

Frame level features to generate captions

Earlier Work

[Venugopalan et al. 2014, Venugopalan et al. 2015, Chen et al. 2018, Pei et al. 2019]

Frame level features

- Generating captions for video not only involves understanding of visual and temporal cues.
- But also object level features and interaction of these objects in spatio-temporal dimension.

Recent Works

Enhance captions using BERT model.

[Zhang et al. 2020]

Object Encoder Transformer **Object Branch** Input Video Distill Description GroundTru Scene Branch Generato pox a bork chi while demonstrating t External Language 000 ... 0 000 Addition Multiplication Teacher-recommend Teacher-enforced ① Concatenation Learning Learning

[Pan et al. 2020]

Two steam Arch, with late fusion

Object interactions using GCNs

Recent Works

Zhang et al. 2020

- Object level information enhances visual encoding.
- But, features extracted using pretrained object detectors.
 - May not capture all object categories needed.
 - Can introduce bias.

Common Video Captioning Pipeline

Common Video Captioning Pipeline

Architecture

*Spatio-temporal graph for video captioning with knowledge distillation., Pan et. al CVPR-2020

Architecture

Our Work

Co-segmentation branch (CoSB) COSAM SRIM GAP COSAM **SRIM** Ο DIM DIM ບັ REDUCTION EXPANSION ° ° amestit 1x1 CONV C^{RI} (1x1 CONV) ×× Block × V × V **CONTEXT FEATURES** Ē ъ SPATIAL OBJECT Ť CHANNEL MULTIHEAD ATTENTION ASSOCIATION Lth CNN ATTENTION × SELF-ATTENTION × BLOCK (1 x 1 CONV) ्रे BLOCK ປ່ T x N_o x H_L x W_L ບັ × × × F ⊢ **Spatial** masks

*Co-segmentation inspired attention networks for video-based person re-identification. ICCV, 2019.

Our Work - Testing

Dataset

	#Videos	Train/Val/Test	#Sentences/Video
MSVD	1970	1200/100/670	~40
MSR-VTT	10000	6513/497/2990	20

Microsoft Video-Description Corpus (MSVD) Microsoft Research Video-to-Text (MSR-VTT)

Quantitative Results

We achieve state-of-the-art performance on MSVD and get competitive results on MSRVTT.

Ablations

Qualitative Results - Salient Regions (COSAM)

- Better at localizing unusual objects.
- Our model correctly detects octopus, which is not usually in object detector datasets.

GT: A woman is slicing octopus. Ours: A woman is slicing **octopus**. STG-KD: A woman is slicing carrots.

Qualitative Results - Salient Regions (COSAM)

GT: A man is talking about a car. Ours: A man is talking about a car. STG-KD: A man is talking about a car. GT: A boy is kicking a soccer ball. Ours: A boy is kicking a **soccer** ball. STG-KD: A boy kicks a goal.

Qualitative Results - Object descriptors (SRIM)

Ours: A cartoon creature is talking to a man. GT: A cartoon with a creature is running at a man.

Ours: A girl is singing on a stage. GT: A girl is singing on a stage

Conclusion

- We proposed an end-to-end network to capture local salient regions in contrast to using pretrained object detectors.
- Visualizations show that co-segmentation is indeed able to capture salient regions including tail distribution objects.
- Competitive results on benchmarks without the usage of pretrained object detectors.

Thank you! 😳