Non-linear Motion Estimation for Video Frame Interpolation using Space-time Convolutions Saikat Dutta, Arulkumar Subramaniam, Anurag Mittal Indian Institute of Technology Madras, India

Ta	ask:	Proposed M
	Video frame interpolation (VFI): To synthesize one or multiple frames between two consecutive frames in a video.	
	Applications: slow-motion video generation, video compression and developing video codecs.	$I_{-1}, I_0, I_1,$
Μ	otivation:	
	Recent method [1] attempts to model per-pixel motion by non-linear models (e.g., quadratic):	
	$F_{0 \to t} = \alpha_0 \times t + \beta_0 \times t^2$	
	$F_{1 \to t} = \alpha_1 \times (1 - t) + \beta_1 \times (1 - t)^2$	
	Downsides : Possible inaccuracies in the case of motion discontinuities over time (i.e. sudden jerks) and occlusions.	Nonlinear
С	ontributions:	
	Approximation of the per-pixel motion $\alpha_0^{}, \alpha_1^{}, \beta_0^{}, \beta_1^{}$ using a 3D CNN.	Flow and
	A novel 3D CNN architecture called GridNet-3D with input as bidirectional optical flows + occlusion maps to output per-pixel non-linear motion params $\alpha_0, \alpha_1, \beta_0, \beta_1$.	$\bullet \begin{array}{c} \text{Occlusion} \\ \text{Estimator} \end{array} \\ I_{-1}, I_0, I_1, I_2 \end{array}$
	By estimating these parameters, we can softly switch between linear and quadratic motion models.	Backward Flow reve
	A motion refinement module to refine the non-linear motion followed by a simple warping operation to synthesize the frames.	warping f $F_{t \to 0}(\mathbf{x}) = \frac{\sum_{\mathbf{p}} F_{t \to 0}(\mathbf{x})}{\sum_{\mathbf{p}} F_{t \to 0}(\mathbf{x})}$
	Experiments and comparison with state-of-the-art algorithms on four datasets.	

lethod:

Motion Estimation (NME) module:

Flow Estimation (BFE) module:

ersal layer for estimating backward flow:

$$\frac{\mathbf{p} + F_{0 \to t}(\mathbf{p}) \in N(\mathbf{x})}{\sum_{\mathbf{p} + F_{0 \to t}(\mathbf{p} + F_{0 \to t}(\mathbf{p})) \in N(\mathbf{x})} w(\mathbf{x}, \mathbf{p})}$$

Motion Refinement (MR) module:

Estimation of per-pixel offset and residuals to further refine the estimated backward flow:

$$F_{t\to 0}^r(x,y) = F_{t-1}$$

Blending Mask Estimation (BME) module:

- **G** Frame Synthesis:
- Final interpolated frame is given by,

 $\hat{I}_{t} = \frac{(1-t) \times M \odot bw(I_{0}, F_{t \to 0}^{r}) + t \times (1-M) \odot bw(I_{1}, F_{t \to 1}^{r})}{(1-t) \times M + t \times (1-M)}$

 $_{\rightarrow 0}(x + \Delta x, y + \Delta y) + r(x, y)$

The refined backward motions are used to warp input images to yield the interpolated frame. We use a learnable CNN generates a soft blending mask to merge the warped input images.

Results:

Method	Input	Vimeo Septuplet		DAVIS		HD		GoPro		Params	Runtime
Ivicuiou	frames	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	(M)	(s)
SepConv [25]	2	33.04	0.9334	25.38	0.7428	30.24	0.8784	26.88	0.8166	21.6	0.024
SuperSloMo [13]	2	33.46	0.9423	25.84	0.7765	30.37	0.8834	27.31	0.8367	39.61	0.025
CAIN [5]	2	31.70	0.9106	24.89	0.7235	29.22	0.8523	26.81	0.8076	42.78	0.02
BMBC ¹ [26]	2	31.34	0.9054	23.50	0.6697	-	-	24.62	0.7399	11.0	0.41
Tridirectional [4]	3	32.73	0.9331	25.24	0.7476	29.84	0.8692	26.80	0.8180	10.40	0.19
QVI [36]	4	34.50	0.9521	27.36	0.8298	30.92	0.8971	28.80	0.8781	29.22	0.10
FLAVR [14]	4	33.56	0.9372	25.74	0.7589	29.96	0.8758	27.76	0.8436	42.06	0.20
Ours	4	34.99	0.9544	27.53	0.8281	31.49	0.9000	29.08	0.8826	20.92	0.32

 $F^r_{t
ightarrow 0}$ (QVI)

 $F^r_{t
ightarrow 0}$ (Ours)

Conclusion:

Future research:

- helps to improve the performance.
- modeling.

References:

[1] Xu, Xiangyu, et al. "Quadratic video interpolation." Advances in Neural Information Processing Systems 32 (2019). [2] Kalluri, Tarun, et al. "Flavr: Flow-agnostic video representations for fast frame interpolation." arXiv preprint arXiv:2012.08512 (2020).

Table 1. Quantitative comparison with state-of-the-art methods. Best and second best scores are in red and blue respectively

Flow difference QVI Ours Figure 4. Intermediate flow visualization between QVI and our approach.

Ground Truth

Presented a 3D CNN based frame interpolation algorithm which uses bi-directional flow and occlusion maps to predict per-pixel non-linear (quadratic) motion parameters.

Project Page

□ To explore whether inclusion of RGB frames as input Investigation on per-pixel motion based on cubic