
Self-Attention based Feature Extractors for 3D
Object Detection in Point Clouds

Arulkumar Subramaniam1?, Ashish Vaswani2, and Niki Parmar2

1 Indian Institute of Technology Madras, India
aruls@cse.iitm.ac.in

2 Google Brain
{avaswani,nikip}@google.com

Abstract. Object detection in 3D point clouds typically follows a two-
stage pipeline of extracting object proposals followed by classification and
regression. Existing models such as PointNet, PointNet++, StarNet use
a series of point-wise linear transformations to learn features from point
clouds. However, for smaller objects with fewer points such as pedes-
trians, capturing larger context around them could provide more infor-
mation for accurate detection, which point-wise features fail to achieve.
Self-attention has been widely used as a computational primitive across
several modalities and has been shown to capture both local and global
dependencies. In this work, we use a self-attention based featurizer to
model local interactions within proposal neighborhoods and global in-
teractions between proposals. This featurizer outperforms the previous
point-based featurizers on the large scale Waymo 3D object detection on
vehicles and pedestrians, achieving significant gains on pedestrian detec-
tion (1.8% mAP). Our ablations show that modeling both global and
local interactions are important, and provide complementary gains.

Keywords: 3D object detection, Self attention, Autonomous driving

1 Introduction

Object detection in 3D point clouds is an important problem in domains such
as Autonomous Driving [14, 12], Robot Navigation [11] and Human-Computer
interaction. State-of-the-art (SoTA) approaches for object detection in 3D point
clouds [9, 5, 10, 1, 4, 6] adopt a two-stage detection pipeline: “object proposal”
followed by “classification & regression”. Among them, StarNet [5], uses a simple
sampling strategy to extract object proposals and achieves strong results on the
recently introduced large scale Waymo 3D object detection dataset[12].

The object proposals, that comprise of object centers and a neighborhood of
points around the centers, are passed through a point-based featurizer to learn
point-wise representations that are eventually aggregated to compute object pro-
posal representations. Similar to point based featurizers such as [7, 8, 3], StarNet
uses a series of point-wise linear transformations to compute representations of
points within each object proposal. In this work, we use the simple strategy of
replacing point-based featurizers with self-attention to model interactions be-
tween the points in a neighborhood, and self-attention between object proposals

? Work done during an internship at Google Brain



2 Arulkumar Subramaniam, Ashish Vaswani, and Niki Parmar

to model global interactions between objects. In the next section, we describe
where we place our featurizers within the StarNet architecture.

2 Self-Attention featurizer for StarNet

We extend the object detection framework from Ngiam et al. [5] (Fig. 1) by
replacing their local point-wise featurizer with a self-attention based featurizer.

3D point 
cloud

Center 
selection

Featurizer

Box regressorBox classifier

Non-maximal
suppression

Predicted 
3D boxes

Learned module
Rule-based module

(1)

(2)

(3)

(4)

Maxpool

Linear

PA-block

Nc x Np x 6

Nc x Np x din

NA-block

Nc x Np x dout

Nc x Np x 6

Nc x dout

PA-block

NA-block

Nc x Np x 6

Linear

NA-block
NA-block

PA-block

…

PA-block…

Nc x Np x din

Nc x Np x dout

Linear

Nc x Np x 6

NA-block
NA-block
NA-block…

Nc x Np x din

Nc x Np x dout

NA-only featurizer NA-PA featurizer

NA-PA Alternated
featurizer

Fig. 1: Detection framework from Ngiam et al.[5] (Left) & Three configurations of Self-
attention featurizer (Right). The detection framework consists of four core components:
1) Center selection, 2) Featurizer, 3) Bounding Box Regression/Classification 4) Non-
maximal suppression

The featurizer takes the object centers and the points around each center as
input. We denote the number of centers as Nc, and the number of points around
each center as Np . The input is then (Nc×Np×6), where the 6 channels are the
euclidean co-ordinates (x,y,z) along with range, elongation, intensity. This input
is first passed through a linear layer to form a Nc ×Np × din tensor, where din
is the input feature dimension. The output of the featurizer is Nc × dout where
dout is the output feature dimension.

The self-attention featurizer comprises of a series of self-attention blocks fol-
lowed by a max pooling layer. Each block consists of a multi-head self-attention
layer[13] followed by a feed-forward layer. The details about the block can be
found in the supplementary material.

We apply self-attention at two granularities:

Neighborhood self-attention (NA): We apply the self-attention block for points
within each center to learn local shape and context cues. In NA-block, a shared
SA-block is applied on neighborhood point features (Np × din) of each center.

Proposal self-attention (PA): To model relationships between object proposals
with self-attention, we first max-pool the Np × din representations of points



Self Attention Featurizers for 3D object detection 3

within each proposal neighborhood resulting in a single din dimensional repre-
sentation for each of the Nc centers and then apply self-attention between these
centers. To inject this information back into the point representations, for each
proposal, we concatenate the vector from the result of the proposal attention
with the point representations of that proposal and project the concatenated
vectors back to din dimensions with a 2din × din linear transformation.

By arranging NA-blocks and PA-blocks, we formulate three different config-
urations of featurizer namely, 1) NA-only featurizer, 2) NA-PA featurizer, and
3) NA-PA Alternated featurizer as shown in (Fig. 1 Right).

3 Experiments

We use the Waymo Open Dataset(WOD)[12], a large-scale dataset consist-
ing frames of 1000 segments of 20 seconds LiDAR measurements (rate of 10
Hz). In our experiments, we use two classes: Pedestrian and Vehicle. The per-
formance is evaluated using the measure of mean average precision (mAP) on
Waymo validation set. Details about our training setup and hyper-parameters
can be found in the supplementary section.

3.1 Results

Models #params #GFlops
Pedestrian

mAP
Vehicle
mAP

PointPillars[2] - 3700 62.1 57.2

MVF[15] - - 65.3 62.9

StarNet[5] 1.483 M 136.56 66.8 53.7

NNA = 4 0.316 M 128.7 67.83 53.91

NNA = 10 0.467 M 317.15 69.05 59.2

NNA = 4, NPA = 4 0.421 M 130.08 67.64 58.09

Nalternate = 4 0.421 M 131.8 68.3 58.66

Table 1: Comparisons on Waymo validation set. NNA, NPA, Nalternate are num-
ber of NA-, PA-, Alternated NA and PA blocks respectively.

In Table 1, we see that by replacing the StarNet featurizer with only 4 NA-
blocks, we outperform the baseline significantly on pedestrian detection with
fewer FLOPS and an order of magnitude fewer parameters. Scaling to 10 NA-
blocks, we achieve +3.25% and +5.5% than StarNet on pedestrian and vehicle
detection respectively. However, combining NA and PA gives us better FLOP-
accuracy trade-off, outperforming the baseline on both pedestrian and vehicle
detection. We find that an effective strategy for mixing NA and PA blocks is to
alternate between them as depicted in Fig. 1 (Right).

3.2 Ablations

Increasing number of attention blocks improves performance Scaling
the NA-only featurizer by increasing the number of attention blocks consistently
improves mAP on both vehicles and pedestrians (Fig. 2 Left). Improvements on
pedestrian class flattens out after 8 attention blocks.



4 Arulkumar Subramaniam, Ashish Vaswani, and Niki Parmar

1 2 3 4 5 6 7 8 9 10
Number of NA-blocks

45

50

55

60

65

70

m
A

P
65.11

67.83
69.33 69.44 69.35

48.71

53.91

56.11

58.58 58.92

Number of NA-blocks vs. mAP

pedestrian mAP

vehicle mAP

64 256 512 768 1024
Number of centers

0

10

20

30

40

50

60

70

m
A

P

20.56

49.04

54.77 56.11

18.07

45.19

50.84
53.86

Vehicle Detection: Number of centers vs. mAP

6 NA-blocks

StarNet

Fig. 2: Performance increases as the number of NA-blocks increases (Left). In-
creasing center proposals improves the coverage of 3D scene, thus improves the
detection performance (Right)

Increasing number of centers To analyze the influence of center proposal
stage, we experiment with number of centers used for prediction. Fig. 2 (Right)
reveals that more number of centers leads to higher coverage of the scene and
thus increased performance.

0 25 50 75 100 125 150 175 200

GFlops

10

20

30

40

50

60

70

m
A

P

Pedestrian detection: GFlops vs. mAP

6 NA-blocks

5 NA-blocks

4 NA-blocks

StarNet

Fig. 3: Comparison of computational
complexity over baseline[5]. We observe
that NA-only featurizer with 4 blocks
achieves better FLOP-accuracy trade-
offs than StarNet.

Comparison of NA and PA
blocks NA with 10 blocks achieves
good performance, however, adds
a significant computational over-
head. With respect to computation
complexity, NA-only featurizer with
4 NA-blocks outperforms StarNet
with better FLOP-accuracy trade-offs
(Fig. 3). PA possess negligible param-
eter and computation overhead. We
find the best strategy is to combine 4
PA-blocks with 4 NA blocks, improv-
ing the performance of vehicle detec-
tion by 4.18% (Table 2).

Increasing number of attention
heads We analyze the behavior of at-
tention heads following the practice from [13]. Increasing heads to 4 improves
performance while adding minimal computation as shown in (Table 3).

NNA NPA #params #G Flops
Pedestrian

mAP
Vehicle
mAP

4 0 0.32M 128.71 67.83 53.91

4 2 0.37M 129.04 67.3 55.66

4 4 0.42M 130.08 67.64 58.09

Table 2: Ablation on number of PA-
blocks. NNA, NPA are number of
NA-, PA-blocks respectively.

NNA Nh
Vehicle
mAP

6 1 54.06

6 2 55.62

6 4 56.11

Table 3: Ablation on
number of attention
heads



Self Attention Featurizers for 3D object detection 5

References

1. Chen, X., Kundu, K., Zhu, Y., Berneshawi, A.G., Ma, H., Fidler, S., Urtasun, R.:
3d object proposals for accurate object class detection. In: Advances in Neural
Information Processing Systems. pp. 424–432 (2015)

2. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars:
Fast encoders for object detection from point clouds. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 12697–12705 (2019)

3. Liu, Y., Fan, B., Meng, G., Lu, J., Xiang, S., Pan, C.: Densepoint: Learning densely
contextual representation for efficient point cloud processing. In: Proceedings of the
IEEE International Conference on Computer Vision. pp. 5239–5248 (2019)

4. Naiden, A., Paunescu, V., Kim, G., Jeon, B., Leordeanu, M.: Shift r-cnn: Deep
monocular 3d object detection with closed-form geometric constraints. In: 2019
IEEE International Conference on Image Processing (ICIP). pp. 61–65. IEEE
(2019)

5. Ngiam, J., Caine, B., Han, W., Yang, B., Chai, Y., Sun, P., Zhou, Y., Yi, X.,
Alsharif, O., Nguyen, P., et al.: Starnet: Targeted computation for object detection
in point clouds. arXiv preprint arXiv:1908.11069 (2019)

6. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointnets for 3d object
detection from rgb-d data. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (June 2018)

7. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets
for 3d classification and segmentation. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 652–660 (2017)

8. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space. In: Advances in neural information processing
systems. pp. 5099–5108 (2017)

9. Shi, S., Guo, C., Jiang, L., Wang, Z., Shi, J., Wang, X., Li, H.: Pv-rcnn: Point-voxel
feature set abstraction for 3d object detection. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 10529–10538 (2020)

10. Shi, S., Wang, X., Li, H.: Pointrcnn: 3d object proposal generation and detection
from point cloud. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 770–779 (2019)

11. Song, S., Lichtenberg, S.P., Xiao, J.: Sun rgb-d: A rgb-d scene understanding bench-
mark suite. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 567–576 (2015)

12. Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo,
J., Zhou, Y., Chai, Y., Caine, B., Vasudevan, V., Han, W., Ngiam, J., Zhao, H.,
Timofeev, A., Ettinger, S., Krivokon, M., Gao, A., Joshi, A., Zhang, Y., Shlens, J.,
Chen, Z., Anguelov, D.: Scalability in perception for autonomous driving: Waymo
open dataset (2019)

13. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. In: Advances in neural information
processing systems. pp. 5998–6008 (2017)

14. Yang, B., Luo, W., Urtasun, R.: Pixor: Real-time 3d object detection from point
clouds. In: Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition. pp. 7652–7660 (2018)

15. Zhou, Y., Sun, P., Zhang, Y., Anguelov, D., Gao, J., Ouyang, T., Guo, J., Ngiam,
J., Vasudevan, V.: End-to-end multi-view fusion for 3d object detection in lidar
point clouds. In: Conference on Robot Learning. pp. 923–932 (2020)


