Feature Ensemble Networks with Re-ranking for Recognizing Disguised Faces in the Wild

Arulkumar Subramaniam¹, Ajay Narayanan¹ and Anurag Mittal

Indian Institute of Technology Madras (IITM),
Indian Institute of Information Technology Design & Manufacturing Kancheepuram (IIITDM)

April 20, 2022

1/25

¹equal contribution

Overview

- Challenges
- 2 Observations in the problem domain
- 3 Pipeline
 - Pre-processing & Base models
 - Model Architecture
 - Objective functions
 - Post-Processing
- 4 Results
- **5** Conclusions and Future work

Challenges

Challenges in Face recognition task include,

- Natural challenges (as any other CV tasks):
 - Illumination
 - Pose
 - Background Clutter

Challenges

Challenges in Face recognition task include,

- Natural challenges (as any other CV tasks):
 - Illumination
 - Pose
 - Background Clutter
- Subject-specific challenges: Intentional or un-intentional disguises such as
 - Wearables like Eye-glasses, Masks, Hats etc.,
 - Make-up
 - Plastic surgery

Prior deep learning approaches in Face Recognition

- FaceNet²
 - ZF-Net³ and GoogleNet⁴ architectures with Triplet loss
 - L2 distance comparison
- IR50
 - Extension of SE-ResNet50 architecture with ArcFace loss⁵ and Focal loss⁶.

²Florian Schroff, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding for face recognition and clustering". In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015, pp. 815–823.

³Matthew D Zeiler and Rob Fergus. "Visualizing and understanding convolutional networks". In: *European conference on computer vision*. Springer, 2014, pp. 818–833.

⁴Christian Szegedy et al. "Going deeper with convolutions". In: *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2015, pp. 1–9.

⁵ Jiankang Deng et al. "ArcFace: Additive Angular Margin Loss for Deep Face Recognition". In: arXiv preprint arXiv:1801.07698 (2018).

• Instead of comparing individual images, what if we **take the neighborhood** of the Gallery (or database) images into account?

- Instead of comparing individual images, what if we take the neighborhood of the Gallery (or database) images into account?
- Re-ranking methods exploit the neighborhood information among the query and gallery instances

⁷Zhong et al., "Re-ranking person re-identification with k-reciprocal encoding".

- Instead of comparing individual images, what if we take the neighborhood of the Gallery (or database) images into account?
- Re-ranking methods exploit the neighborhood information among the query and gallery instances
- Prevalent in retrieval tasks like Person Re-Identification to improve performances in an unsupervised way.

(D) (D) (D) (D) (D) (D)

⁷Zhong et al., "Re-ranking person re-identification with k-reciprocal encoding".

- Instead of comparing individual images, what if we **take the neighborhood** of the Gallery (or database) images into account?
- Re-ranking methods exploit the neighborhood information among the query and gallery instances
- Prevalent in retrieval tasks like Person Re-Identification to improve performances in an unsupervised way.
- k-reciprocal nearest neighbor re-ranking⁷ is popular in retrieval tasks

⁷Zhong et al., "Re-ranking person re-identification with k-reciprocal encoding".

"Re-ranking" intuition

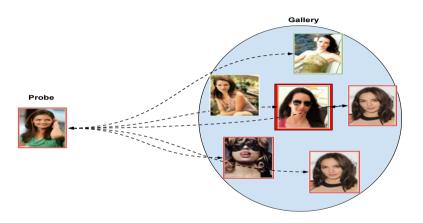


Figure: Probe-to-Gallery comparison

6 / 25

"Re-ranking" intuition

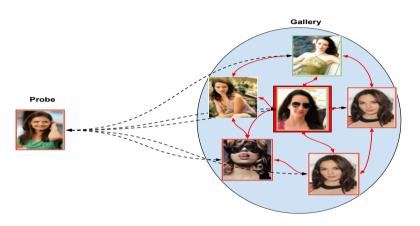


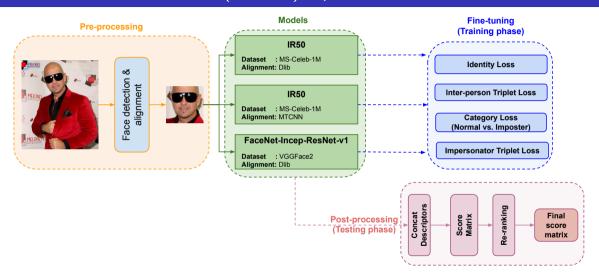
Figure: Probe-to-Gallery comparison and exploit neighborhood within gallery

Contributions

Our contributions are as follows:

- We propose a **F**eature **E**nsem**B**le **Net**work (FEBNet)- an ensemble of multiple state-of-the-art face recognition networks
- Two loss functions
 - Impersonator Triplet loss
 - Category loss
- Usage of re-ranking strategy

Feature Ensemble Network (FEBNet) Pipeline



Pre-processing & Base models

We use two methods for landmark detection and alignment:

- dlib⁸
- MTCNN⁹

Three pretrained base models:

- $\mathsf{IR50}_D = \mathsf{IR50}^{10} + \mathsf{dlib} \text{ (pre-processing)}$
- $IR50_M = IR50 + MTCNN$ (pre-processing)
- FaceNet-Incep-ResNet-v1¹¹

⁸Davis E. King. "Dlib-ml: A Machine Learning Toolkit". In: Journal of Machine Learning Research 10 (2009), pp. 1755–1758.

⁹K. Zhang et al. "Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks". In: IEEE Signal Processing Letters 23.10 (Oct. 2016), pp. 1499–1503. ISSN: 1070-9908. DOI: 10.1109/LSP.2016.2603342.

¹⁰Jian Zhao. High-Performance Face Recognition Library on PyTorch. https://github.com/ZhaoJ9014/face.evoLVe.PyTorch. 2018.

¹¹Szegedy et al., "Going deeper with convolutions"; Kaiming He et al. "Deep residual learning for image recognition". In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778.

Base models

IR50:

- an extension of SE-ResNet50¹² model
- pretrained on MS-Celeb-1M¹³ dataset
- pretraining objective functions: ArcFace loss¹⁴ and Focal loss¹⁵

FaceNet-Incep-ResNet-v1:

- Inception model with residual connections
- pretraining datasets: "VGGFace2" 16
- pretraining objective functions: person classification loss (cross-entropy) & Triplet loss

¹² Jie Hu, Li Shen, and Gang Sun. "Squeeze-and-excitation networks". In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018, pp. 7132–7141.

¹³Adam Harvey and Jules LaPlace. MegaPixels: Origins, Ethics, and Privacy Implications of Publicly Available Face Recognition Image Datasets. 2019. URL: https://megapixels.cc/ (visited on 04/18/2019).

¹⁴Deng et al., "ArcFace: Additive Angular Margin Loss for Deep Face Recognition".

 $^{^{15}\}mbox{Lin}$ et al., "Focal Loss for Dense Object Detection".

¹⁶ Q. Cao et al. "VGGFace2: A dataset for recognising faces across pose and age". In: International Conference on Automatic Face and Gesture Recognition. 2018.

Experiments

Performance of base models before fine-tuning

	GAR ¹⁷								
	_	1%FAR		@0.1%FAR					
Models		Protoco	1	Protocol					
ivioueis	1	2	4	1	2	4			
IR50 _D				44.70					
IR50 _M	67.58	79.22	81.27	40.83	72.62	70.61			
FaceNet	79.83	72.48	72.61	45.04	50.15	49.17			

Table: Performance of base models without fine-tuning on training dataset

12 / 25

¹⁷GAR = Genuine Acceptance Rate

 $^{^{18}\}mathsf{FAR} = \mathsf{False}$ Acceptance Rate

Objective functions

The pretrained base models are fine-tuned using training dataset¹⁹ with the aid of four objective functions as follows:

- Identity Loss
- Inter-person Triplet Loss
- Category Loss
- Impersonator Triplet Loss

¹⁹ Maneet Singh et al. "Recognizing Disguised Faces in the Wild". In: IEEE Transactions on Biometrics, Behavior, and Identity Science, Volume 1, No. 2. 2019, pp. 97–108.

Objective functions

• Cross-entropy loss L_{id} : loss between the softmax probability output p_i from the model and the target identity.

$$L_{id} = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{M} t_{ij} \log p_{ij}$$
 (1)

Here, N = number of face images in the mini-batch, M = number of identities in train-set.

• Inter-person Triplet Loss L_{trip}: To promote small intra-class distance and high inter-class distance.

$$L_{trip} = \frac{1}{N} \sum_{i=1}^{N} \max(0, d(I_i, I_{i+}) - d(I_i, I_{i-}) + m)$$
 (2)

Here m = margin parameter, d(i,j) = distance between embeddings i & j (Here, we use Euclidean distance).

Objective functions

• Category Loss L_{cat}: To discriminate the impersonator images of the identities. Two classes namely 1) Normal-validation-disguise class, 2) Impersonator class.

$$L_{cat} = -y \log p - (1 - y) \log(1 - p)$$
 (3)

• Impersonator Triplet Loss L_{imp}: loss to distinguish a particular identity from it's impersonator.

$$L_{imp} = \frac{1}{N} \sum_{i=1}^{N} \max(0, d(I_i, I_{i+}) - d(I_i, I_{imp}) + m)$$
 (4)

Here m = margin parameter, d(i, j) = distance between embeddings i & j (In this paper, Euclidean distance).

Overall Objective function

The overall objective function/total loss is given by:

$$L = \gamma_1 L_{id} + \gamma_2 L_{trip} + \gamma_3 L_{imp} + \gamma_4 L_{cat}$$
 (5)

The ratios $\gamma_1 = 1.0, \gamma_2 = 0.5, \gamma_3 = 0.1, \gamma_4 = 0.01$ are selected using validation set.

Ensemble method

- L2-normalized feature vectors are extracted from the base models independently
- Concatenate them to get the final feature descriptor
- Euclidean distance to get distance matrix
- Apply Re-ranking²⁰ to get the final distance matrix.

◆□▶ ◆□▶ ◆重▶ ◆重▶ ■ のQ@

²⁰Zhong et al., "Re-ranking person re-identification with k-reciprocal encoding".

Experiments

Performance of ensemble of fine-tuned models

Architecture			GAR							
0	2	et	(01%FAF	?	@0.1%FAR				
IR50 _D	FaceNet		Protoco		Protocol					
표 표		1	2	4	1	2	4			
		√	80.33 73.80		74.37	45.37	52.57	51.87		
	√		66.38	81.81	82.27	05.71	73.87	72.97		
	√	√	91.93	83.11	83.50	52.77	71.86	70.07		
√			93.94	83.16	83.37	48.40	70.12	69.05		
√		√	93.61	84.30	84.44	53.10	71.24	69.66		
√	√		94.62	85.42	85.56	53.44	75.07	73.72		
√	✓	✓	95.79	86.19	86.25	56.30	75.25	73.42		

Table: Performance of various configurations of ensemble architectures

Experiments

Analysis of objective functions

Los	ses	GAR						
-	0		@1%FAR	:	@0.1%FAR			
Lcat	Limp		Protocol	Protocol				
7	7	1	2	4	1	2	4	
		95.46	86.22	86.42	54.95	75.10	73.33	
	✓	95.79	86.37	86.34	54.11	75.13	73.37	
✓		95.12	86.31	86.39	55.63	75.16	73.29	
✓	✓	95.79	86.19	86.25	56.30	75.25	73.42	

Table: Performance comparison of various configurations of ensemble architectures with the proposed objective functions: Impersonator Triplet loss (L_{imp}) , Category loss (L_{cat})

19 / 25

Re-ranking²¹

Input: Calculated distance matrix D_{orig} ($Q \times G$), Q = number of query images, G = number of gallery images

10 > 4 @ > 4 E > 4 E > 9 Q @

²¹Zhong et al., "Re-ranking person re-identification with k-reciprocal encoding".

Re-ranking²¹

Input: Calculated distance matrix $D_{\textit{orig}}$ ($Q \times G$), Q = number of query images, G = number of gallery images **Steps:**

- k-reciprocal nearest neighbors pruning:
 - Only keep the gallery entries which are reciprocal k-reciprocal (hyper parameter $= k_1$) neighbor to the probe

²¹Zhong et al., "Re-ranking person re-identification with k-reciprocal encoding".

Re-ranking²¹

Input: Calculated distance matrix $D_{\textit{orig}}$ ($Q \times G$), Q = number of query images, G = number of gallery images **Steps:**

- 4 k-reciprocal nearest neighbors pruning:
 - Only keep the gallery entries which are reciprocal k-reciprocal (hyper parameter $= k_1$) neighbor to the probe
- New Feature formulation
 - For each image (probe (query) and gallery), formulate a G-dim descriptor

$$f_{p,g_i} = egin{cases} e^{-d(p,g_i)} & ext{if } g_i \in \mathsf{k1-NN} ext{ of probe } p \ 0 & ext{otherwise} \end{cases}$$

²¹Zhong et al., "Re-ranking person re-identification with k-reciprocal encoding".

Re-ranking - continuation

- local query expansion
 - each image's feature is approximated by

$$f_p = \frac{1}{k_2} \sum_{i=0}^{k_2} f_{NN_i}$$

• Jaccard distance (D_{jac}) calculation

$$d_{jac}(p, g_i) = 1 - rac{\sum_{j=1}^{N} \min(f_{(p,g_j)}, f_{(g_i,g_j)})}{\sum_{j=1}^{N} \max(f_{(p,g_j)}, f_{(g_i,g_j)})}$$

21 / 25

Re-ranking - continuation

- local query expansion
 - each image's feature is approximated by

$$f_p = \frac{1}{k_2} \sum_{i=0}^{k_2} f_{NN_i}$$

• Jaccard distance (D_{jac}) calculation

$$d_{jac}(p,g_i) = 1 - rac{\sum_{j=1}^{N} \min(f_{(p,g_j)}, f_{(g_i,g_j)})}{\sum_{j=1}^{N} \max(f_{(p,g_j)}, f_{(g_i,g_j)})}$$

Essentially, it is similar to,

$$d_{jac}(p, g_i) = 1 - \frac{\mathsf{Count} \ \mathsf{of} \ \mathsf{intersection} \ \mathsf{of} \ \mathsf{neighbours}}{\mathsf{Count} \ \mathsf{of} \ \mathsf{union} \ \mathsf{of} \ \mathsf{neighbors}}$$

1 Distance fusion : $D_{final} = (1 - \lambda) D_{jac} + \lambda D_{orig}$

Experiments

Application of re-ranking in face recognition

	Hyper-parameters		GAR								
				1% FA		@0.1% FAR					
k_1	k_2	λ		Protoco		Protocol					
			1	2	4	1	2	4			
	5	0.6	95.46	88.64	88.69	56.97	83.88	82.57			
23	_	0.7	96.30	88.35	88.49	57.14	82.88	81.68			
23	6	0.6	95.29	88.74	88.83	54.11	84.13	82.88			
	0	0.7	95.96	88.41	88.60	53.78	83.21	82.00			
	5	0.6	95.46	88.68	88.75	57.64	83.85	82.44			
24	5	0.7	96.47	88.27	88.42	56.97	82.85	81.70			
24	6	0.6	95.83	88.77	88.87	56.13	84.13	82.77			
	U	0.7	96.30	88.42	88.54	55.29	83.13	81.90			
FEI	FEBNet (No re-ranking)		95.79	86.19	86.25	56.30	75.25	73.42			

Table: Hyper parameter search for re-ranking method on the final model. Here, k_1 = the count for finding k-reciprocal nearest neighbors, k_2 = count for k-reciprocal nearest neighbor expansion, λ = ratio of importance given to original distance matrix with respect to jaccard distance during re-ranking.

Comparison with state-of-art

	GAR							
	(01%FAI	₹	@0.1%FAR				
Models	ı	Protoco	I	Protocol				
iviodeis	1	2	4	1	2	4		
MiRA-Face	95.46	90.65	90.62	51.09	80.56	79.26		
UMDNets	94.28	86.62	86.75	53.27	74.69	72.90		
FEBNet (Ours)	95.83	88.77	88.87	56.13	84.13	82.77		

Table: Comparisons of FEBNet with state-of-art on DFW2018 dataset

	GAR								
Model	@0.1% FAR				@0.01% FAR				
Model		Prot	ocol		Protocol				
	1	2	3	4	1	2	3	4	
ResNet-50	47.6	35.4	46.4	35.9	38.4	16.4	22.4	16.9	
LightCNN-29v2	74.4	55.6	69.2	55.7	51.2	36.9	47.2	36.5	
FEBNet (ours)	54.8	92.3	78.8	90.8	42.4	87.7	47.6	73.7	

Conclusion

- Transfer learning based ensemble model
- Two new loss functions apart from prevalent person-id based cross entropy and inter-person triplet loss
- Application of re-ranking to DFW

Future work: What if we augment the face images with disguising effects? Will it help?

Thank you!