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Abstract

Recognizing a person’s face images with inten-
tional/unintentional disguising effects such as make-up,
plastic surgery, artificial wearables (hats, eye-glasses) is
a challenging task. We propose a Feature EnsemBle
Network (FEBNet) for recognizing Disguised Faces in the
Wild (DFW). FEBNet encompasses multiple base networks
(SE-ResNet50, Inception-ResNet-V1) pretrained on large-
scale face recognition datasets (MS-Celeb-1M, VGGFace2)
and fine-tuned on DFW training dataset. During the fine-
tuning phase, we propose to use two novel objective func-
tions, namely, 1) Category loss, 2) Impersonator Triplet loss
along with two prevalent objective functions: Identity loss,
Inter-person Triplet loss. To further improve the perfor-
mance, we apply a state-of-the-art re-ranking strategy as
a post-processing step. Extensive ablation studies and eval-
uation results show that FEBNet significantly outperforms
the baseline models.

1. Introduction
Face recognition is an important and challenging

biometry-aligned computer vision task that deals with
matching person’s faces[47, 17]. The task has attracted
notable attention from the research community due to its
wide range of applications in surveillance, robotics, access
control, human-computer interaction and so on. The task
involves significant challenges such as unconstrained illu-
mination, scale, view-point and pose variations, image dis-
tortions, wide range of intentional and/or unintentional dis-
guising effects[33, 32] on faces.

With the advent of deep learning, the performance of
face recognition algorithms [26, 37, 39, 30] has surpassed
human level performance in several benchmark datasets.
However, such state-of-the-art algorithms do not perform
well in scenarios involving complex variations such as il-
lumination changes[22, 10, 35], disguising make-ups and
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Figure 1. Illustration of disguised face recognition task. The rep-
resentative images are taken from DFW-2018 dataset[33].
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Figure 2. Application of re-ranking technique(s) [49] to the dis-
guised face recognition task. The representative images are taken
from DFW-2018 dataset[33]. Subject images with red colour are
different from query’s subject.

impersonator faces[45, 2]. The disguising make-ups in-
clude use of tattoos, plastic surgery, artificial wearables
such as hats, eye-glasses, nose rings, earrings, scarfs and
so forth[33, 32]. Impersonator detection and recognition is
an important task considering the ever-increasing demand
for security and surveillance needs. Impersonator refers to
a person who has a similar looking face as that of an iden-



tity’s face images (Fig. 1).
Most benchmark datasets for face recognition[12, 16, 4]

are created based on scenes that are well-lit, with com-
plete visible faces and with no disguising effects or wear-
ables on faces. The face recognition systems trained with
these datasets perform well on the face images that pos-
sess similar characteristics. However, in practical scenarios,
the face images possess variety of illumination changes and
disguising effects intentionally or unintentionally by peo-
ple that makes the face recognition task harder and pre-
trained models to be ineffective. Further, the datasets col-
lected especially to focus on the specific challenges such
as illumination changes[11] or disguising make-up[33, 32]
are considerably small in number of identities or images.
To be able to perform well on such datasets, one of the
widely used approach is to transfer the learned knowledge
from large datasets[12, 16, 4] and further, fine-tune in the
small dataset(s)[33, 32, 31, 11]. In a similar way, we ex-
plore the face recognition task focusing on disguised face
images by first evaluating several pretrained models[46, 9]
trained on several existing large benchmark datasets[12, 4]
and show that they exhibit reasonable performance owing
to the learned knowledge from large-scale datasets. In the
next step, we fine-tune the base models on the Disguised
Faces in the Wild-2018 (DFW-2018) training set and evalu-
ate the results. During fine-tuning, we formulate two novel
loss/objective functions namely, 1) Impersonator Triplet
loss, 2) Category loss to systematically improve the clas-
sification performance of the identities and impersonators.
Further, we formulate a Feature EnsemBle based Network
(FEBNet) which consists of multiple fine-tuned base model
architectures to reduce variance of individual base models
and promote discrimination among the identities.

A widely applicable post-processing technique in re-
trieval problems, such as person re-identification[48, 41],
is to use the neighborhood information to improve the
performance. For instance, k-reciprocal re-ranking[49]
method uses mutual k-nearest neighbors followed by query
expansion step to calculate the jaccard distance reflect-
ing the neighborhood similarities. It has been proved by
empirical studies that the re-ranking strategy gives supe-
rior performance[49, 34] and application of such post-
processing could boost the performance in face recognition
task as well (Fig. 2). However, the application of such
post-processing methods is relatively unexplored in the face
recognition task. To bridge this gap, in our work, we ex-
plore the usage of k-reciprocal re-ranking[49] as a post pro-
cessing method and benchmark the performance improve-
ments.

Our contributions are as follows:

1. We propose a Feature EnsemBle Network (FEBNet)
as an ensemble of multiple state-of-the-art face recog-
nition networks for the problem of recognizing dis-

guised faces in the wild.

2. We propose two novel loss functions namely 1) Imper-
sonator Triplet loss, 2) Category loss to improve the
performance in challenging impersonator recognition
scenario.

3. We explore the usage of re-ranking strategy in the ap-
plication of disguised face recognition.

4. We perform extensive ablation studies of the models
and proposed objective functions to evaluate the im-
portance of the individual constituting components.

2. Related works
Typical face recognition solutions consist of a three step

approach namely: 1) Face and/or facial landmark points de-
tection, 2) Face alignment and 3) Recognition. Our work
focuses on improving recognition phase for the task of dis-
guised face recognition. In this section, we briefly outline
the related literature for the task.
Face recognition: Earlier approaches used hand-crafted
features such as Local Binary Patterns (LBP)[1], Histogram
of Oriented Gradients (HoG)[6], SIFT[21], SURF[25] fol-
lowed by a suitable metric (learned or predefined) to com-
pare the features. The recent works predominantly use deep
learning architectures owing to their ability to learn fea-
tures and metrics automatically end-to-end from the data.
FaceNet[30] used ZF-Net[43] and GoogleNet[36] architec-
tures with Triplet loss as objective function to optimize the
model. The final descriptors are compared using L2 dis-
tance during test. DeepFace[37] used a 9-layer architecture
with softmax cross-entropy loss and siamese loss for opti-
mization. The face embeddings at the test time are com-
pared using Chi-square distance. Recent approaches con-
centrate on improving the objective functions as well as ex-
ploring data augmentation strategies for better generaliza-
tion. For instance, ArcFace[7] added an angular margin loss
in phase domain of descriptors to promote generalization.
Further, CosFace[40] used the cosine similarity metric with
margin to improve the performance. Though a super-human
level performance is achieved in face recognition[37, 30],
the challenges remain in case of recognizing faces with illu-
mination variations, disguised faces, etc. Our work focuses
on improving performance in recognizing disguised faces
in the wild.

Disguised face recognition: In a very few works in the
literature focusing on disguised face recognition, pretrained
models trained on large benchmark datasets are used to
transfer the knowledge. Specifically, MiRA-Face[45] uses
a combination of two CNNs for performing disguised face
recognition by treating the aligned and unaligned images
separately. A dimension reduction step based on Principal
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Components Analysis (PCA) is carried out on the learned
features before evaluation. Another similar work [2] per-
forms feature extraction from the aligned faces[28] using
two pretrained networks. Independent scores are calculated
individually from the features of the models and the final
score is obtained by averaging the individual scores. Our
work follows a similar paradigm of transfer learning by uti-
lizing pretrained networks, but differs by the addition of two
novel loss functions and a re-ranking post-processing step.

Re-ranking and it’s applications Successful application
of re-ranking methods as a post-processing step can be no-
ticed in several retrieval tasks. Re-ranking methods typi-
cally follow the philosophy of ”Tell me who your friends
are and I’ll tell you who you are”, i.e., they exploit the
neighborhood information among the query and gallery in-
stances as well as inter-gallery instances to improve the
performance. K-nearest neighborhood method is preva-
lently used to capture the neighborhood information. On-
drej et al. [5] showed that using the average embedding of
k-nearest neighbors to re-query the database improves per-
formance. K-reciprocal nearest neighbor approach is intro-
duced in [27] that showed the effectiveness of mutual k-
nearest neighbors. Zhong et al. [49] used k-reciprocal near-
est neighbors to determine a neighborhood based jaccard
distance between query and gallery instances. The final dis-
tance is calculated as a combination of the jaccard distance
and the original query-gallery distance. Application of this
method to person re-identification task showed remarkable
improvements[49, 34]. However, in face recognition such
re-ranking methods are relatively unexplored. In our work,
we demonstrate the effectiveness of [49] in the task of rec-
ognizing disguised faces.

3. Proposed pipeline

In this work, we explore the methods to transfer the
knowledge from publicly available pretrained face recog-
nition models[46, 9] to the task of recognizing disguised
faces. The pipeline of the proposed method is shown in the
Figure 3.

3.1. Pre-processing

In the pre-processing stage (Fig. 3), the face images are
aligned using one of the two (dlib[18], MTCNN[44]) land-
mark detection and alignment routine depending on the base
models.

dlib[18] face alignment In this module, we make use of
the latest Dlib package’s ResNet34[13] to predict the fa-
cial landmark location. Compared to the combination of
HoG and Linear SVM, the deep model based landmark de-
tection is more accurate and reasonably faster. The pixel

values from the predicted landmark locations are mapped
to canonical position to align the face image.

MTCNN[44] face alignment Multi-Task Cascaded Con-
volution Neural Networks is a joint face detection and align-
ment module that utilizes the inherent correlation between
these tasks to improve the performance. The network con-
sists of 3 cascaded stages that perform coarse-to-fine pre-
diction of face and landmark location in real-time.

3.2. Base model architectures

In the proposed architecture, three pretrained base mod-
els are used in combination to tackle the disguised face
recognition task. The individual models are explained be-
low:

IR50 [46] This model is an extension of SE-ResNet50
[15] model trained on MS-Celeb-1M [12] dataset with ob-
jective function as Arc loss[7] and Focal loss[20]. MS-
Celeb-1M [12] dataset contains 100K celebrity identities
and around ∼5M images in total. During pre-training,
MTCNN’s face detection and alignment method is used to
detect and crop the face image to size 112 × 112. Further,
while fine-tuning on training set (refer to Section 4.1), we
use two instances of IR50, one with Dlib’s[18] face align-
ment, the other with MTCNN’s[44] face alignment to have
complementary alignment methods (referred as IR50D and
IR50M respectively from now on).

FaceNet-Incep-ResNet-v1 In this architecture (referred
as FaceNet from now on), the Inception[36] model with
residual connections is pretrained with the dataset “VG-
GFace2” using person classification loss (cross-entropy).
VGGFace2[4] is a large dataset consisting of 8631 identi-
ties and ∼ 3.08M images in total. During pre-training, the
MTCNN’s face detection and alignment method is used to
detect and crop the face image to size 160× 160.

3.3. Objective functions

The IR50 and FaceNet models are pretrained using MS-
Celeb-1M dataset[12] and VGGFace2[4] respectively with
the aid of Arc loss[7] and Focal loss[20]. Further, the pre-
trained base models are fine-tuned using training dataset
with the aid of four objective functions as follows:

Identity Loss (Lid) The cross-entropy loss is used to cal-
culate the loss between the softmax probabilty output pi
from the model and the target identity. i.e., Given a per-
son’s face image Ii and the target identity ti as an one-hot
vector, the Identity loss is defined as,

Lid = − 1

N

N∑
i=1

M∑
j=1

tij log pij (1)
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Figure 3. Illustration of our FEBNet model pipeline. The pre-processing step consists of face detection and alignment. In training phase,
the base models are fine-tuned on DFW-2018 training set using the objective functions explained in Section 3.3. In the testing phase, for
each test image, the (L2 normalized) descriptors are extracted from the base models and concatenated to get the final descriptor. Further,
the re-ranking[49] method is applied on the score matrix to get the final score matrix.

Here, N = number of face images in the mini-batch, M
= number of identities in train-set.

Inter-person Triplet Loss (Ltrip) To promote small
intra-class distance and high inter-class distance, the triplet
loss is applied on the face image embeddings. For each face
image Ii in the mini-batch, hard positive Ii+ and hard nega-
tive Ii− instances are mined[14] within the mini-batch. The
triplet loss is calculated by:

Ltrip =
1

N

N∑
i=1

max(0, d(Ii, Ii+)− d(Ii, Ii−) +m) (2)

Here m = margin parameter, d(i, j) is the metric dis-
tance between embeddings i & j (In this paper, Euclidean
distance).

Category Loss (Lcat) To discriminate the impersonator
images of the identities, we employ a binary classification
loss to classify the face images into two classes namely
1) Normal-validation-disguise class, 2) Impersonator class.
The binary classification loss is formulated as a cross-
entropy function between the predicted category probability
p and the one-hot encoding of target class y, as follows:

Lcat = −y log p− (1− y) log(1− p) (3)

Impersonator Triplet Loss (Limp) Similar to Inter-
person Triplet Loss (Ltrip), we also employ an imperson-
ator triplet loss to distinguish a particular identity from it’s

impersonator. For this purpose, each face image’s embed-
ding Ii in the mini-batch is considered as ’anchor’, a ran-
dom instance of same person in the mini-batch is selected
as ’positive’ (Ii+) and impersonator images are considered
as ’negative’ (Iimp). Limp is defined as:

Limp =
1

N

N∑
i=1

max(0, d(Ii, Ii+)− d(Ii, Iimp) +m) (4)

Here m = margin parameter, d(i, j) is the metric dis-
tance between embeddings i & j (In this paper, Euclidean
distance).

The overall objective function/total loss is given by:

L = γ1Lid + γ2Ltrip + γ3Limp + γ4Lcat (5)

The ratios γ1 = 1.0, γ2 = 0.5, γ3 = 0.1, γ4 = 0.01 are
selected using validation set (refer to Section 4.1).

3.4. Post-processing, Testing

The L2-normalized feature vectors are extracted from
the base models independently and concatenated to get
the final feature descriptor. The final descriptors are L2-
normalized again and score matrix (Sfused) is calculated
by considering Euclidean distance between feature descrip-
tors. Further, Re-ranking[49] is applied on Sfused to get the
re-ranked score matrix.

3.4.1 Re-ranking for disguised face recognition

Re-ranking methods are prevalent in retrieval solutions and
are proved to improve the retrieval performance[49, 34].
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Albeit the significant performance improvements in other
vision tasks, the performance gain of such re-ranking meth-
ods in the context of face recognition is less explored and
unknown. In our work, we introduce the usage of re-ranking
method, specifically, k-reciprocal re-ranking method [49]
to the disguised face recognition task and evaluate the per-
formance in the validation dataset. The hyper-parameters
for the re-ranking method are empirically selected based
on the validation set. The ablation studies on these hyper-
parameters are shown in Table 5.

In the setup for re-ranking, the ”query” images (Q) are
to be matched with a set of ”gallery” (G) images already in
the database. The k-reciprocal re-ranking strategy consists
of the following steps, as proposed and explored in [49]:

1. k-reciprocal nearest neighbors: In the first step, for
each query qi, the k-nearest gallery neighbors (k1) i.e.,
g1, g2 . . . gk1

are refined to get k-reciprocal nearest neigh-
bors list. Specifically, for each query, from the k-nearest
neighbor list, the candidates for which the query is also a k-
nearest neighbor are filtered. Such candidates are classified
as k-reciprocal nearest neighbors.

2. k-reciprocal nearest neighbors expansion: In the
second step, the k-reciprocal neighbor list of each query
qi is expanded further with k-reciprocal neighbors of its
gallery candidates if both query and the gallery candidate
has significant neighbors (k2) in common.

3. Jaccard distance (Djac) calculation: Given that the
final k-reciprocal nearest neighbors are obtained for each of
the query qi, the neighborhood information of the query is
encoded as a d−dimension feature vector where d = number
of gallery/candidate images. Further, the jaccard distance
is calculated by correlating the encoded feature vectors of
query and gallery.

4. Distance fusion: The original distance matrix Dorig

and Jaccard distance matrix (Djac) are linearly combined
(in terms of a ratio λ) to arrive at the final distance matrix
(Dfinal). Dfinal is used further to rank the gallery images
for each query to improve the retrieval results.

The hyper-parameters for re-ranking (k1 = 24, k2 =
6, λ = 0.6) are chosen by using validation dataset.

4. Experiments
4.1. Datasets, Implementation, Training

DFW-2018 Dataset[33]: DFW-2018 dataset consists of
∼11,000 images of 1000 subjects collected from the inter-
net. Out of 1000 subjects, 400 subjects are selected as the
training set and the remaining 600 subjects constitute the
validation set. Each subject contains images of three types,
1) Normal/Validation: Non-disguised frontal face image

of a subject, 2) Disguised: Face images of a subject hav-
ing intentional or unintentional disguise, 3) Impersonator:
Face images of an impersonator for a subject. (An image of
any other person, intentionally or unintentionally, pretend-
ing to be the subject’s identity)

DFW-2019 Dataset[32]: DFW-2019 dataset contains
over 3800 images of 600 subjects, encompassing different
disguise variations including variations due to bridal make-
up and plastic surgery. DFW-2019 dataset serves as the test-
ing dataset.

Training: The pre-trained base models are fine-tuned us-
ing DFW-2018 training dataset[33]. We use Stochastic
mini-batch Gradient Descent (SGD) to optimize the model
for 120 epochs with the hyper-parameters as follows: batch
size = 120, momentum = 0.9, weight decay = 5e-4, margin
for Inter-person triplet loss Ltrip and Impersonator triplet
loss Limp = 0.6, initial learning rate = 0.01. The learn-
ing rate is decayed using a cosine annealing scheduler. The
model with best validation accuracy is chosen to be the final
model for testing.

During fine-tuning, we select mini-batches at each it-
eration in such a way that each distinct subject from a
mini-batch has samples from all the three categories (Nor-
mal/Validation, Disguise, Impersonator). Also, we freeze
the weights of all layers except the last fully-connected
layer and each base model results in a feature dimension
of 512.

4.2. Evaluation protocol

We follow the evaluation protocols from [33, 32] for dis-
guised face recognition as illustrated in Table 1. Due to the
inherent ambiguity of the 2D face images, it is very chal-
lenging to discriminate impersonated face images (protocol
1). The obfuscation and plastic surgery protocol are rela-
tively easier as it is discriminating different identity’s im-
ages.

We report the results of protocols 1, 2, 4 for the vali-
dation dataset and all the protocols in the testing dataset.
We encourage the interested readers to refer to [33, 32] for
more details. All the quantification numbers of the models
are given by Genuine Acceptance Rate (GAR) @x% False
Acceptance Rate (FAR), where x ∈ {1, 0.1, 0.01}.

4.3. Ablation studies

4.3.1 Performance of base models before fine-tuning

We report the performances of individual base models
before fine-tuning in Table 2. Owing to the training
on relatively large datasets[12, 4], the individual base
models exhibit considerably good performance without
fine-tuning. For example, FaceNet[36] model pretrained
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Protocol Usage Genuine pairs Imposter pairs

1. Impersonation

To evaluate the algorithm’s performance
under the impersonation case.
i.e., discriminating the original identity’s
face from the person’s face looking very
similar to the identity

The combination of ’normal’
and ’validation’ face images
of same identity

The combination of ’normal, validation
, disguised’ images with its own
’impersonator’ images

2. Obfuscation
To correctly identify the person whose
face has intentional/unintentional
make-ups, wearable items, etc.,

The combination of (normal,
disguise), (validation, disguise),
and (disguise, disguise) images of
the subject

The combination of ’normal, validation,
disguised’ images of one subject with
’normal, validation, disguised’ images
of another subject

3. Plastic surgery
To evaluate the algorithm to
validate the faces with plastic surgery

The combination of (normal,
disguisep) and (validation,
disguisep) images of the subject.
Here, disguisep = plastic surgery
images

The combination of ’normal, validation,
disguisedp’ images of one subject with
’normal, validation, disguisedp’ images
of another subject

4. Overall
To evaluate a given algorithm
on the entire dataset

Super set of genuine pairs
from Impersonation, Obfuscation,
and Plastic surgery protocols

Super set of imposter pairs
from Impersonation, Obfuscation
and Plastic surgery protocols

Table 1. Evaluation protocols for recognizing disguised faces

on VGGFace2[4] dataset gives 79.83%, 72.48%, 72.61%
GAR@1%FAR on protocols 1, 2, 4 respectively. The IR50
model[46] pretrained on MS-Celeb-1M dataset[12] + Dlib
face alignment[18] outperforms FaceNet model by 17%,
8%, 8% GAR@1%FAR respectively on protocols 1, 2, 4
owing to the high capacity and generalizing ability of the
ResNet model[13] over Inception model [36]. Surprisingly,
IR50M model gives much lower GAR@0.1%FAR on Pro-
tocol 1. It could be due to the accurate face alignment of
MTCNN[44] that the feature extraction model is unable to
distinguish between the impersonator and the real identity’s
face images.

GAR

Models

@1%FAR @0.1%FAR
Protocol Protocol

1 2 4 1 2 4

IR50D ([46] + [18]) 96.47 80.42 80.73 44.70 70.32 69.85
IR50M ([46] + [44]) 67.58 79.22 81.27 04.83 72.62 70.61

FaceNet[9, 30] 79.83 72.48 72.61 45.04 50.15 49.17

Table 2. Performance of base models without fine-tuning on train-
ing dataset

4.3.2 Performance of base models after fine-tuning

Transfer learning[3, 42] has been proved to be an ef-
fective way of reusing the knowledge gained from other
tasks/datasets to the task/dataset at hand. In this spirit, to
reuse the knowledge gained from large-scale face recogni-
tion task[46, 9, 30] to the disguised face recognition task,
the pretrained base models are fine-tuned in the DFW-
2018 training dataset and the results are illustrated in Ta-
ble 3. During fine-tuning, we adopt the objective func-
tions as mentioned in Section 3.3. The fine-tuning step lets
the model familiarize with the training dataset at hand and
align with the distribution of data of this particular task.

Hence, the model’s performance is typically increased af-
ter fine-tuning, as observed in many other computer vision
tasks[24, 29]. For example, FaceNet model’s GAR @1%
FAR has increased by 0.5%, 1.32%, 1.76% in absolute scale
on protocols 1, 2, 4 as noticed from Tables 2 and 3. Sim-
ilarly, Protocol 2 and 4’s GAR@1% FAR of IR50D model
is improved by 3% each, IR50M model by 7% and 5% re-
spectively. Out of all the protocols (1, 2 & 4), significant
improvements are noticed for protocols 2 and 4.

Architecture GAR

IR
50

D

IR
50

M

Fa
ce

N
et

@1%FAR @0.1%FAR

Protocol Protocol

1 2 4 1 2 4

X 80.33 73.80 74.37 45.37 52.57 51.87

X 66.38 81.81 82.27 05.71 73.87 72.97

X X 91.93 83.11 83.50 52.77 71.86 70.07

X 93.94 83.16 83.37 48.40 70.12 69.05

X X 93.61 84.30 84.44 53.10 71.24 69.66

X X 94.62 85.42 85.56 53.44 75.07 73.72

X X X 95.79 86.19 86.25 56.30 75.25 73.42
Table 3. Performance of various configurations of ensemble archi-
tectures. Here “IR50D” denotes pretrained IR50 model fine-tuned
with Dlib-aligned face images of DFW-2018 train set, “IR50M”
denotes pretrained IR50 model fine-tuned with MTCNN-aligned
face images of DFW-2018 training dataset, “FaceNet” denotes
pretrained FaceNet-Inception-ResNet-v1 network fine-tuned with
Dlib-aligned face images of DFW-2018 training dataset.

4.3.3 Performance of ensembles of fine-tuned base
models

In terms of bias-variance trade-off, organizing several mod-
els in an ensemble is an effective way to reduce the variance
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of models [23]. In many cases, ensemble models are proved
to be empirically superior than the individual models in sev-
eral computer vision[38, 19] and speech recognition tasks
[8]. Following similar footsteps, we explore to create en-
sembles by combining different fine-tuned base models and
depict the results in Table 3. Ensemble models are created
by concatenating feature descriptors from the constituting
fine-tuned base models. In the disguised face recognition
task, we observe that in majority of cases, the ensemble
models perform on-par or superior to the individual con-
stituent fine-tuned base models. First, we analyze the per-
formances of ensemble models consisting of two base mod-
els, then further extend the analysis to the ensemble models
containing all the three base models.
Ensemble of FaceNet model with other models: Com-
bining FaceNet-Incep-ResNet-v1 (FaceNet) model with
other models either performs on-par or increases the
model’s performance. Specifically, combining IR50M

(IR50 model with MTCNN face alignment) and FaceNet
model increases the GAR@1% FAR up to 10% and
GAR@0.1% FAR up to 7% on Protocol 1. Further, com-
bining IR50D (IR50 model with Dlib face alignment) and
FaceNet model improves the GAR@1% FAR of Protocol 2,
4 by ∼ 1% and GAR@0.1% FAR of Protocol 1 by 4.7%
than the individual model’s performance. As a result, we
observe that FaceNet model’s inclusion in the ensemble pro-
vides a positive boost to the overall performance.
Ensemble of IR50 models: The IR50D model exhibits
the highest performance compared to other models. We
observe a degraded performance of IR50M model in
GAR@0.1% FAR of protocol 1, as similar to the non fine-
tuned model’s performance in Section 4.3.1. Regardless of
such degraded performance, the ensemble of IR50D and
IR50M performs superior than all of the ensemble models
consisting of two individual models. We attribute this per-
formance increase to the compatibility of the feature space
of both IR50 models and increase in confidence score to-
wards the retrieval performance.
Ensemble model consisting of three base models: Simi-
lar to the ensemble models with two base models, we further
extend the analysis to ensembles with three base models.
In the ensemble models with three base models, the per-
formance remains on-par or superior to the overall highest
performing model. We consider the best performing model
(IR50M + IR50D + FaceNet) as our final model and name it
as “FEBNet” that stands for “Feature EnsemBle Network”.
In the following sections, we perform further ablation stud-
ies on “FEBNet” to demonstrate the influence of the pro-
posed loss functions and re-ranking strategy.

4.3.4 Analysis of objective functions

In this section, we evaluate the effectiveness of newly pro-
posed loss functions: Category loss and Impersonator triplet

objective functions (refer to Section 3.3). We perform the
experiments on our final model and illustrate the results in
Table 4. In our empirical study, the person identity loss
(Lid) and Inter-person triplet (Ltrip) loss are kept constant
and given more importance (γ1 = 1.0, γ2 = 0.5). The
losses Lid, Ltrip guide the stability of the training by driv-
ing the features to be discriminative and robust enough to
classify the persons and to be able to promote lower intra-
class distance as well as higher inter-class distance. Fur-
ther in the experiments, we add the proposed losses of Cat-
egory loss and Impersonator triplet loss to analyze the per-
formance improvements.

We observe from Table 4 that the inclusion of Imper-
sonator triplet loss increases GAR @1% FAR of Protocol
1 by 0.3% in absolute value and inclusion of category loss
improves GAR @0.1% FAR of Protocol 1 by 0.6%. The in-
clusion of both of the losses improve the GAR@1% FAR of
protocol 1 by 0.3% and GAR@0.1% FAR of protocol 1 by
1.35%. By improving the much harder GAR@0.1% FAR
performance, It is evident that the proposed losses improve
the performance significantly.

Losses GAR

L
c
a
t

L
im

p

@1%FAR @0.1%FAR
Protocol Protocol

1 2 4 1 2 4

95.46 86.22 86.42 54.95 75.10 73.33
X 95.79 86.37 86.34 54.11 75.13 73.37

X 95.12 86.31 86.39 55.63 75.16 73.29
X X 95.79 86.19 86.25 56.30 75.25 73.42

Table 4. Performance comparison of various configurations of en-
semble architectures with the proposed objective functions: Im-
personator Triplet loss (Limp), Category loss (Lcat)

4.4. Application of re-ranking on face recognition

The re-ranking method described in Section 3.4.1 is de-
pendent on the hyper-parameters k1, k2 and λ. We conduct
empirical studies on validation dataset[33] with our final
model to determine these hyper-parameters and show the
quantitative observations in Table 5.

By comparing the performance of FEBNet from Table 3
(last row) with the re-ranking performances in Table 5, we
observe that the application of re-ranking helps protocols
2 and 4 significantly while giving a slight improvement or
on-par results in protocol 1. We fix the hyper-parameters
of re-ranking to be k1 = 24, k2 = 6, λ = 0.6 based on
the overall improvement in performance as shown in Table
5 and apply the re-ranking procedure during test set evalua-
tion. Comparing our final model “FEBNet with re-ranking”
to the state-of-the-art architectures (MiRA-Face[45] and
UMDNets[2]) from DFW-2018 challenge[33] in Table 5,
we observe that FEBNet outperforms them in the challeng-
ing measure of GAR@0.1% FAR and performs on-par in
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Hyper-parameters GAR

k1 k2 λ

@1% FAR @0.1% FAR
Protocol Protocol

1 2 4 1 2 4

23
5

0.6 95.46 88.64 88.69 56.97 83.88 82.57
0.7 96.30 88.35 88.49 57.14 82.88 81.68

6
0.6 95.29 88.74 88.83 54.11 84.13 82.88
0.7 95.96 88.41 88.60 53.78 83.21 82.00

24
5

0.6 95.46 88.68 88.75 57.64 83.85 82.44
0.7 96.47 88.27 88.42 56.97 82.85 81.70

6
0.6 95.83 88.77 88.87 56.13 84.13 82.77
0.7 96.30 88.42 88.54 55.29 83.13 81.90

MiRA-Face[45] 95.46 90.65 90.62 51.09 80.56 79.26
UMDNets[2] 94.28 86.62 86.75 53.27 74.69 72.90

FEBNet+[49] (Ours) 95.83 88.77 88.87 56.13 84.13 82.77

Table 5. Hyper parameter search for re-ranking[49] method on the
final model. Here, k1 = the count for finding k-reciprocal nearest
neighbors, k2 = count for k-reciprocal nearest neighbor expansion,
λ = ratio of importance given to original distance matrix with re-
spect to jaccard distance during re-ranking. MiRA-Face[45] and
UMDNets[2] are the present state of arts in DFW-2018 dataset.

.

GAR@1% FAR.

4.5. Test set evaluation

The final model “FEBNet with re-ranking” is evaluated
in the test set[32] by the DFW-2019 competition organizers
and the results are outlined in Table 6. We compare the per-
formance of our model with two base models available with
the test set namely 1) ResNet50 and 2) LightCNN-29v2.

Model

GAR
@0.1% FAR @0.01% FAR

Protocol Protocol
1 2 3 4 1 2 3 4

ResNet-50[32] 47.6 35.4 46.4 35.9 38.4 16.4 22.4 16.9
LightCNN-29v2[32] 74.4 55.6 69.2 55.7 51.2 36.9 47.2 36.5

FEBNet (ours) 54.8 92.3 78.8 90.8 42.4 87.7 47.6 73.7

Table 6. Test dataset results

We can observe from Table 6 that our model comfort-
ably outperforms the ResNet-50 models in all of the proto-
cols. Specifically, our model improves GAR@0.1% FAR /
GAR@0.01% FAR of protocol 1 by 7.2% / 4%, protocol 2
by 56.9% / 71.3%, protocol 3 by 32.4% / 25.2% and pro-
tocol 4 by 54.9% / 56.8%. In case of the LightCNN-29v2
model, our model outperforms in all the protocols except
protocol 1. Specifically, our model improves GAR@0.1%
FAR / GAR@0.01% FAR of protocol 2 by 36.7% / 50.8%,
protocol 3 by 9.6% / 0.4% and protocol 4 by 35.1% / 37.2%.
We also depict the log scale Receiver Operating Character-
istics (ROC) curve of our final model’s performance in Test
set in the Figure 4.

Figure 4. The ROC curve for the Disguised Faces in the Wild
(DFW) test dataset

The test set[32] results illustrate the effectiveness of
the proposed model to tackle disguised face recognition.
Though LightCNN-29v2 outperforms our model in proto-
col 1 (impersonator distinguishing task), it fails to perform
well on much easier (on human scale) task of distinguish-
ing different persons (protocol 2). In contrast, our model
strives for improved performance in disguised face recog-
nition without degrading performance in the natural inter-
person discriminative face recognition task.

5. Conclusion

In this work, we proposed a transfer learning based en-
semble model for disguised face recognition. We started
with fine-tuning the pretrained base models using two novel
proposed loss functions. Then, we benchmarked the fine-
tuned base model’s performance in the validation dataset
and further, we explored the combination of base models
and arrived at the final model that achieves superior per-
formance. Additionally, we also employed a less-explored
strategy of re-ranking in face recognition to the task of dis-
guised face recognition and verify that it improves the per-
formance significantly by extensive empirical studies.
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