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Self-Attention1

Self-attention captures local and global dependencies effectively.

In this work, we study self-attention based feature extractor for 3D object detection

1Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.



3D Object Detection Pipeline1

3D point 
cloud

Center 
selection

Featurizer

Box regressorBox classifier

Non-maximal
suppression

Predicted 
3D boxes

(1)

(2)

(3)

(4)

Maxpool

Nc x Np x 6

Nc x dout
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Nc  - Number of centers

 Np - Number of neighborhood points around center
6    - Input channels (x, y, z, range, elongation, intensity)
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Self-attention block types

1. Neighborhood Self-attention Block (NA-block):

Input (X): Nc x Np x din

Shared self-attention block is applied on each center’s neighborhood points (Np x din) to 
model local dependencies (e.g., Shape)

2. Proposal Self-attention Block (PA-block):

       Input (X): Nc x din 
                      (obtained by avg-pool of neighborhood point’s features Nc x Np x din → Nc x din)

       Self-attention block is applied on features of all centers to gain global context
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1)  NA-only featurizer 2)  NA-PA featurizer 3)  NA-PA Alternated featurizer



Dataset, Evaluation protocol

Waymo Open Dataset: 

● 1000 segments of 20 seconds LiDAR measurements (rate of 10 Hz)

● In our experiments, we use two classes: 
○ Pedestrian 
○ Vehicle

● Evaluation metric: mean average precision (mAP) on Waymo validation set

● The hyperparameters are same as StarNet (Ngiam et. al)  
For our models, Number of attention heads = 4

● For testing, we use Nc = 1024, NP = 256
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Thank you!
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