

Self-Attention based Feature Extractors for 3D Object Detection in Point Clouds

Arulkumar Subramaniam¹, Ashish Vaswani², Niki Parmar²

¹IIT Madras, India ²Google Brain

3D Object Detection in Point Clouds

Downside:

 Point-wise feature transformations (in PointNet, PointNet++, StarNet) may not capture larger context around objects

3D Object Detection in Point Clouds

Downside:

 Point-wise feature transformations (in PointNet, PointNet++, StarNet) may not capture larger context around objects

3D Object Detection in Point Clouds

Downside:

 Point-wise feature transformations (in PointNet, PointNet++, StarNet) may not capture larger context around objects

Self-attention captures local and global dependencies effectively.

In this work, we study self-attention based feature extractor for 3D object detection

¹Vaswani, Ashish, et al. "Attention is all you need." *Advances in neural information processing systems*. 2017.

N_c - Number of centers

- N_p Number of neighborhood points around center
- 6 Input channels (x, y, z, range, elongation, intensity)

Self-attention block types

1. Neighborhood Self-attention Block (NA-block):

Input (X): $N_c x N_p x d_{in}$

Shared self-attention block is applied on each center's neighborhood points ($N_p x d_{in}$) to model local dependencies (e.g., Shape)

2. Proposal Self-attention Block (PA-block):

Input (X): $N_c x d_{in}$

(obtained by avg-pool of neighborhood point's features $N_c x N_p x d_{in} \rightarrow N_c x d_{in}$)

Self-attention block is applied on features of all centers to gain global context

Self-attention block types

1. Neighborhood Self-attention Block (NA-block):

Input (X): $N_c x N_p x d_{in}$

Shared self-attention block is applied on each center's neighborhood points ($N_p x d_{in}$) to model local dependencies (e.g., Shape)

2. Proposal Self-attention Block (PA-block):

Input (X): N_c x d_{in}

(obtained by avg-pool of neighborhood point's features $N_c x N_p x d_{in} \rightarrow N_c x d_{in}$)

Self-attention block is applied on features of all centers to gain global context

Self-attention block types

1. Neighborhood Self-attention Block (NA-block):

Input (X): N_c x N_p x d_{in}

Shared self-attention block is applied on each center's neighborhood points ($N_p x d_{in}$) to model local dependencies (e.g., Shape)

2. Proposal Self-attention Block (PA-block):

Input (X): N_c x d_{in}

(obtained by avg-pool of neighborhood point's features $N_c x N_p x d_{in} \rightarrow N_c x d_{in}$)

Self-attention block is applied on features of all centers to gain global context

1) NA-only featurizer

1) NA-only featurizer

2) NA-PA featurizer

1) NA-only featurizer

2) NA-PA featurizer

3) NA-PA Alternated featurizer

Dataset, Evaluation protocol

Waymo Open Dataset:

- 1000 segments of 20 seconds LiDAR measurements (rate of 10 Hz)
- In our experiments, we use two classes:
 - Pedestrian
 - Vehicle
- **Evaluation metric:** mean average precision (mAP) on Waymo validation set
- The hyperparameters are same as StarNet (Ngiam et. al)
 For our models, Number of attention heads = 4
- For testing, we use $N_c = 1024$, $N_p = 256$

Models	#params	#GFlops	Pedestrian	Vehicle
			mAP	mAP
PointPillars[1]	-	3700	62.1	57.2
MVF[2]	-	-	65.3	62.9
$\operatorname{StarNet}[3]$	1.483 M	136.56	66.8	53.7
NA-only featurizer $(N_{NA} = 4)$	$0.316 \mathrm{~M}$	128.7	67.83	53.91
NA-only featurizer $(N_{NA} = 10)$	$0.467~{\rm M}$	317.15	69.05	59.2
NA-PA featurizer $(N_{NA} = 4, N_{PA} = 4)$	$0.421 \mathrm{\ M}$	130.08	67.64	58.09
NA-PA Alternated featurizer $(N_{alternate} = 4)$	0.421 M	131.8	68.3	58.66

Table 1: Comparisons on Waymo validation set. N_{NA} , N_{PA} , $N_{alternate}$ are number of NA-, PA-, Alternated NA and PA blocks respectively.

Models	#params	#GFlops	Pedestrian	Vehicle
			mAP	mAP
PointPillars[1]	-	3700	62.1	57.2
MVF[2]	-	-	65.3	62.9
$\operatorname{StarNet}[3]$	1.483 M	136.56	66.8	53.7
NA-only featurizer $(N_{NA} = 4)$	$0.316 {\rm ~M}$	128.7	67.83	53.91
NA-only featurizer $(N_{NA} = 10)$	$0.467 { m M}$	317.15	69.05	59.2
NA-PA featurizer $(N_{NA} = 4, N_{PA} = 4)$	$0.421 { m M}$	130.08	67.64	58.09
NA-PA Alternated featurizer ($N_{alternate} = 4$)	$0.421 { m M}$	131.8	68.3	58.66

Table 1: Comparisons on Waymo validation set. N_{NA} , N_{PA} , $N_{alternate}$ are number of NA-, PA-, Alternated NA and PA blocks respectively.

Models	#params	#GFlops	Pedestrian	Vehicle
			mAP	mAP
PointPillars[1]	-	3700	62.1	57.2
MVF[2]	-	-	65.3	62.9
StarNet[3]	1.483 M	136.56	66.8	53.7
NA-only featurizer $(N_{NA} = 4)$	$0.316 {\rm M}$	128.7	67.83	53.91
NA-only featurizer $(N_{NA} = 10)$	$0.467 \mathrm{\ M}$	317.15	69.05	59.2
NA-PA featurizer $(N_{NA} = 4, N_{PA} = 4)$	$0.421 { m M}$	130.08	67.64	58.09
NA-PA Alternated featurizer $(N_{alternate} = 4)$	$0.421 { m M}$	131.8	68.3	58.66

Table 1: Comparisons on Waymo validation set. N_{NA} , N_{PA} , $N_{alternate}$ are number of NA-, PA-, Alternated NA and PA blocks respectively.

Models #para	Hparama	#CFlops	Pedestrian	Vehicle
	#params	#Gr lops	mAP	mAP
PointPillars[1]	-	3700	62.1	57.2
MVF[2]	-	-	65.3	62.9
$\operatorname{StarNet}[3]$	1.483 M	136.56	66.8	53.7
NA-only featurizer $(N_{NA} = 4)$	$0.316~{\rm M}$	128.7	67.83	53.91
NA-only featurizer $(N_{NA} = 10)$	$0.467~{\rm M}$	317.15	69.05	59.2
NA-PA featurizer $(N_{NA} = 4, N_{PA} = 4)$	$0.421 {\rm M}$	130.08	67.64	58.09
NA-PA Alternated featurizer $(N_{alternate} = 4)$	$0.421 { m M}$	131.8	68.3	58.66

Table 1: Comparisons on Waymo validation set. N_{NA} , N_{PA} , $N_{alternate}$ are number of NA-, PA-, Alternated NA and PA blocks respectively.

Thank you!