Normalized Correlation based Deep Matching Networks for Learning Similarity

Arulkumar S

under the guidance of Dr.Anurag Mittal

Computer Vision Lab, IIT Madras

Seminar-I

September 23, 2019

1/58

Outline

Introduction

- Why matching images?
- Common theme & challenges

Person Re-Identification

- Task definition
- Person Re-Identification setup
- Solutions in Literature so-far
- Deep learning techniques
- Normalized correlation based matching layer
- Extension to Patch matching
 - Problem definition
 - Extending NCC for Patch matching
 - Network architectures
 - Results

Summary

September 23, 2019

IIT Madras

Outline

Introduction

- Why matching images?
- Common theme & challenges

Person Re-Identification

- Task definition
- Person Re-Identification setup
- Solutions in Literature so-far
- Deep learning techniques
- Normalized correlation based matching layer
- Extension to Patch matching
 - Problem definition
 - Extending NCC for Patch matching
 - Network architectures
 - Results

Summary

Arul	kumar	e -
- ui	Kumai	9

Introduction Why matching images/patches?

3D reconstruction

• Object tracking ...

• Stereo(Depth) estimation

September 23, 2019

э

・ロト ・雪 ト ・ヨ ト ・

Outline

Introduction

- Why matching images?
- Common theme & challenges

Person Re-Identification

- Task definition
- Person Re-Identification setup
- Solutions in Literature so-far
- Deep learning techniques
- Normalized correlation based matching layer
- Extension to Patch matching
 - Problem definition
 - Extending NCC for Patch matching
 - Network architectures
 - Results

Summary

(a)

• Core task: Matching two images / image patches(keypoints)

Arulkumar S

September 23, 2019 II

◆□ → ◆□ → ◆三 → ◆三 → 三三

• Core task: Matching two images / image patches(keypoints)

• Significant attention on matching images than learning the characteristics of individual classes

・ロト ・戸 ・ ・ ヨ ・ ・ ヨ ・

-

• Core task: Matching two images / image patches(keypoints)

- Significant attention on matching images than learning the characteristics of individual classes
- Less number of examples per classes

・ロト ・雪 ト ・ヨ ト ・

Core task: Matching two images / image patches(keypoints)

- Significant attention on matching images than learning the characteristics of individual classes
- Less number of examples per classes
- Challenges faced in matching images
 - illumination changes
 - Pose/view point changes
 - Occlusion
 - Deformation of objects
 - Motion blur (Tracking)
 - ...

September 23, 2019 IIT Madras

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

▶ ≣ ✓

• Person re-identification

same

different

• Patch matching

Same

Different

Person Re-Identification & Patch Matching

September 23, 2019

IIT Madras

イロト イポト イヨト イヨト

7/58

э

Task definition

Outline

Introduction

- Why matching images?
- Common theme & challenges

2 Person Re-Identification

Task definition

- Person Re-Identification setup
- Solutions in Literature so-far
- Deep learning techniques
- Normalized correlation based matching layer
- Extension to Patch matching
 - Problem definition
 - Extending NCC for Patch matching
 - Network architectures
 - Results

Summary

Arul	kumar	e
- ui	Kumai	9

Person Re-Identification Problem definition

- task of matching a person's image with images from database
- images captured at
 - same/different points in time (of same day)
 - same/different camera
 - various lighting conditions + unconstrained viewpoint/pose changes
- No information about camera position, intrinsic and extrinsic parameters

Image from: Apurva et al. A survey of approaches and trends in person re-identification. Image and Vision Computing - 2014.

Person Re-Identification & Patch Matching

September 23, 2019

A D F A B F A B F A B

IIT Madras

Outline

Introduction

- Why matching images?
- Common theme & challenges

Person Re-Identification

Task definition

Person Re-Identification setup

- Solutions in Literature so-far
- Deep learning techniques
- Normalized correlation based matching layer
- Extension to Patch matching
 - Problem definition
 - Extending NCC for Patch matching
 - Network architectures
 - Results

Summary

(a)

Person Re-Identification setup

- Probe: the person's image to be searched in the database
- Gallery: one (or more) unique image(s) of persons observed so far. Usually, Gallery images will be available in a database.

• Evaluation: Ranking of matching scores (rank-1, rank-5, ...)

3

Practical challenges

- Illumination variation
- Pose/Viewpoint variation
- Background clutters / misalignment errors
- Partial occlusion
- Bad quality images

Viewpoint Change

Illumination Variation

Partial Occlusion

Poor quality of images

September 23, 2019

IIT Madras

(a)

Name	# of identities	# of images/identity	Train/Test split
ViPeR ¹	632	2	316 / 316
CUHK01 ²	971	4	871 / 100
CUHK03 (Labeled / Detected) ³	1360	10	1260 / 100
QMULGRiD ⁴	250	2	125/(125 + 775 unmatched gallery images)

Figure: Datasets relevant to this presentation

Gallery, Probe selection during Test:

A random image from each of the test identify is chosen for gallery set and the rest are considered as probe images.

¹Viewpoint Invariant Pedestrian Recognition with an Ensemble of Localized Features, ECCV-2008

²Human Reidentification with Transferred Metric Learning, ACCV-2012

³DeepReID: Deep Filter Pairing Neural Network for Person Re-identification, CVPR-2014

⁴On-the-fly feature importance mining for person re-identification, PR-2014

Outline

Introduction

- Why matching images?
- Common theme & challenges

2 Person Re-Identification

- Task definition
- Person Re-Identification setup
- Solutions in Literature so-far
- Deep learning techniques
- Normalized correlation based matching layer
- Extension to Patch matching
 - Problem definition
 - Extending NCC for Patch matching
 - Network architectures
 - Results

Summary

A	kumor.	0
Alu	Numai	0

Non-deep learning approaches

- Handcrafted features
 - Color histograms (RGB, HSV, YCbCr ...)
 - Texture histograms (Schmidt, Gabor filtors, HOG, LBP, ...)
 - Dense SIFT features
- Predefined metric / Metric learning
 - L2, Mahalanobis distance measures
 - Fisher discriminant analysis
 - Large-margin nearest neighbor (LMNN)
 - RankSVM
 - ...

September 23, 2019 IIT Madras

イロト イヨト イヨト

≣ •⁄) ९. (२ 15/58

Outline

Introduction

- Why matching images?
- Common theme & challenges

Person Re-Identification

- Task definition
- Person Re-Identification setup
- Solutions in Literature so-far
- Deep learning techniques
- Normalized correlation based matching layer
- Extension to Patch matching
 - Problem definition
 - Extending NCC for Patch matching
 - Network architectures
 - Results

Summary

Arul	kumar	e
- ui	Kumai	9

September 23, 2019

(a)

IIT Madras

Deep learning Why?

Pros:

- End-to-End training
 - Bobust feature extraction
 - Non-linear feature space
 - Metrics/Classifier and Features are optimized together

⁵DeepFace: Closing the Gap to Human-Level Performance in Face Verification, CVPR 2014 ⁶FaceNet: A Unified Embedding for Face Recognition and Clustering, CVPR 2015

Arulkumar S

Person Re-Identification & Patch Matching

・ロン ・ 日 ・ ・ ヨ ・ ・ ヨ ・ September 23, 2019 IIT Madras

18/58

3

Deep learming Whv?

Pros:

- End-to-End training
 - Robust feature extraction
 - Non-linear feature space
 - Metrics/Classifier and Features are optimized together

Cons:

- Needs large amount of data
- Enormous computation power (thanks to GPUs)

⁵DeepFace: Closing the Gap to Human-Level Performance in Face Verification, CVPR 2014 ⁶FaceNet: A Unified Embedding for Face Recognition and Clustering, CVPR 2015

э

Deep learming Why?

Pros:

- End-to-End training
 - Robust feature extraction
 - Non-linear feature space
 - Metrics/Classifier and Features are optimized together

Cons:

- Needs large amount of data
- Enormous computation power (thanks to GPUs)

Prevalent architectures:

- Siamese networks⁵
- Triplet networks⁶

⁵DeepFace: Closing the Gap to Human-Level Performance in Face Verification, CVPR 2014
⁶FaceNet: A Unified Embedding for Face Recognition and Clustering, CVPR 2015

э

Siamese networks

Matching layer based architectures

Descriptor based architectures

September 23, 2019

IIT Madras

・ロト ・回 ト ・ ヨト ・ ヨト - ヨ

Matching layers in literature

- Filter pairing and dot product layer (Liu et al, CVPR 2014)
- Cross Input neighborhood layer (Ahmed et. al, CVPR 2015) (in next slides)
- Normalized Cross Correlation Layer (Subramaniam et al, NIPS 2016)

Metrics for Descriptor based methods

Let x_i, x_j are the raw images and $f(x_i), f(x_j)$ are the extracted descriptors. Cosine similarity $= \frac{f(x_i)^T \cdot f(x_j)}{||f(x_i)|| \cdot ||f(x_j)||}$ Hinge loss $= \begin{cases} ||f(x_i) - f(x_j)||_2^2, & \text{if } i = j, \\ max(0, ||f(x_i) - f(x_j)||_2^2 - \alpha_{hinge}), & \text{if } i \neq j \end{cases}$

20/58

Improved Siamese Architecture

Ahmed et al. An improved deep learning architecture for person re-identification. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) - 2015.

Arulkumar S

Person Re-Identification & Patch Matching

September 23, 2019

IIT Madras

Cross-Input Neighborhood matching layer

(CVPR) - 2015.

Arulkumar S

Person Re-Identification & Patch Matching

September 23, 2019

イロマ イロマ イロマ

म्जू दे (२ 22/58

Triplet networks

Triplet pair of images x_i , x_j , x_k where x_i , x_j are the pairs belonging to the same person and x_k is an image of different person. The triplet loss function with Euclidean metric can be defined as follows:

$$-triplet = \sum_{i,j,k}^{N} max(0, [||f(x_i) - f(x_j)||_2^2 - ||f(x_i) - f(x_k)||_2^2 + \alpha_{triplet}])$$

The loss function using learned distance metric is given by:

$$L_{triplet} = \sum_{i,j,k}^{N} max \left(0, \left[g(x_i, x_j) - g(x_i, x_k) + \alpha_{triplet} \right] \right)$$
(1)

Cheng et al. Person Re-identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) - 2016.

September 23, 2019 IIT Madras

Improved Triplet Loss funtion for person re-identification

Loss function : Let $f(x_i)$, $f(x_j)$, $f(x_k)$ be the extracted features/descriptors of the images x_i , x_j , x_k respectively. Here x_i , x_j = images of same person and x_k = image of a different person.

 $L_{triplet} = max(0, [d(f(x_i), f(x_j)) - d(f(x_j), f(x_k)) + \tau_1])$

Cheng et al. Person Re-identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) - 2016.

A	lumor	0
Alu	Kumai	0

September 23, 2019 IIT Madras

イロン 不良 とくほう イロン 一日

Improved Triplet Loss funtion for person re-identification

Loss function : Let $f(x_i)$, $f(x_j)$, $f(x_k)$ be the extracted features/descriptors of the images x_i , x_j , x_k respectively. Here x_i , x_j = images of same person and x_k = image of a different person.

 $L_{triplet} = max(0, [d(f(x_i), f(x_j)) - d(f(x_j), f(x_k)) + \tau_1])$

Cheng et al. Person Re-identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) - 2016.

Annikumaria	A	I	0
	Aru	kumar	ວ

September 23, 2019 II

IIT Madras 25/58

Deep learning techniques

Improved Triplet Loss funtion for person re-identification

Loss function : Let $f(x_i)$, $f(x_j)$, $f(x_k)$ be the extracted features/descriptors of the images x_i , x_j , x_k respectively. Here x_i , x_j = images of same person and x_k = image of a different person.

 $L_{triplet} = max(0, [d(f(x_i), f(x_j)) - d(f(x_j), f(x_k)) + \tau_1])$

Cheng et al. Person Re-identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) - 2016.

Arulkumar S

Person Re-Identification & Patch Matching

September 23, 2019

IIT Madras

Deep learning techniques

Improved Triplet Loss funtion for person re-identification

Loss function : Let $f(x_i)$, $f(x_j)$, $f(x_k)$ be the extracted features/descriptors of the images x_i , x_j , x_k respectively. Here x_i , x_j = images of same person and x_k = image of a different person.

 $L_{triplet} = max(0, [d(f(x_i), f(x_j)) - d(f(x_j), f(x_k)) + \tau_1])$

$$\begin{aligned} L_{+ve_constraint} &= \max\left(0, \left[d(f(x_i), f(x_j)) - \tau_2\right]\right) \\ L_{total} &= \sum_{i,j,k}^{N} \left(L_{triplet} + L_{+ve_constraint}\right) \end{aligned}$$

Expected:

Cheng et al. Person Re-identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) - 2016.

Arulkumar S

Person Re-Identification & Patch Matching

September 23, 2019

IIT Madras

Quadruplet network for person re-identification

Chen et al. Beyond triplet loss: a deep quadruplet network for person re-identification. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) - 2017.

Arulkumar S

In quadruplet loss, an extra term is added to the triplet loss function.

$$L_{quad} = \sum_{i,j,k}^{N} max([g(x_i, x_j) - g(x_i, x_k) + \alpha_1], 0) + \sum_{i,j,k,l}^{N} max([g(x_i, x_j) - g(x_l, x_k) + \alpha_2], 0)$$
$$s_i = s_j, s_l \neq s_k, s_i \neq s_l, s_i \neq s_k$$

where α_1 and α_2 are the values of margins in two terms and s_i refers to the person ID of image x_i .

Chen et al. Beyond triplet loss: a deep quadruplet network for person re-identification. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) - 2017.

Person Re-Identification & Patch Matching

September 23, 2019

(2)

Method	ViPeR ¹	CUHK01 ²	CUHK03-labeled ³	CUHK03-detected	
Deep-kronecker-matching, CVPR-2018	-	-	91.1	91.0	-
Quadruplet Net, CVPR 2017	49.05	81.00	75.53	-	-
Imp. TripletNet, CVPR 2016	47.8	53.7	-	-	-
Ahmed et al (CIN), CVPR 2015	34.81	65.0	54.74	44.76	-
LOMO + XQDA, CVPR 2015	40.0	-	52.20	46.25	18.96
KISSME + PCA, CVPR 2012	19.6	-	-	-	-

Figure: Rank-1 identification rates for different datasets

⁴On-the-fly feature importance mining for person re-identification, PR-2014

Annikumaria	A	I	0
	Aru	kumar	ວ

Person Re-Identification & Patch Matching

・ロン ・ 日 ・ ・ ヨ ・ ・ ヨ ・ September 23, 2019 IIT Madras

э

¹Viewpoint Invariant Pedestrian Recognition with an Ensemble of Localized Features, ECCV-2008

²Human Reidentification with Transferred Metric Learning, ACCV-2012

³DeepReID: Deep Filter Pairing Neural Network for Person Re-identification, CVPR-2014

Outline

Introduction

- Why matching images?
- Common theme & challenges

2) Person Re-Identification

- Task definition
- Person Re-Identification setup
- Solutions in Literature so-far
- Deep learning techniques
- Normalized correlation based matching layer
- Extension to Patch matching
 - Problem definition
 - Extending NCC for Patch matching
 - Network architectures
 - Results

Summary

September 23, 2019 IIT Madras

(a)

S

Improved Siamese Architecture

Ahmed et al. An improved deep learning architecture for person re-identification. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) - 2015.

Arulkumar S

Person Re-Identification & Patch Matching

September 23, 2019

IIT Madras

,√ (~ 30/58

Cross-Input Neighborhood matching layer

Ahmed et al. An improved deep learning architecture for person re-identification. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) - 2015.

Arulkumar S

Person Re-Identification & Patch Matching

September 23, 2019

IIT Madras

Notable drawbacks

• Smaller neighborhood 5 \times 5 may not be enough to capture pose variations, partial occlusions

September 23, 2019

IIT Madras

э

32/58

(a)

Notable drawbacks

• Smaller neighborhood 5×5 may not be enough to capture pose variations, partial occlusions

(Alternate) solution: increase the search space (horizontally up to full width)

September 23, 2019 IIT Madras

Notable drawbacks

• Smaller neighborhood 5 × 5 may not be enough to capture pose variations, partial occlusions

(Alternate) solution: increase the search space (horizontally up to full width)

• Performing an exact comparison of single pixel may be affected due to illumination variation

September 23, 2019 IIT Madras

Notable drawbacks

• Smaller neighborhood 5×5 may not be enough to capture pose variations, partial occlusions

(Alternate) solution: increase the search space (horizontally up to full width)

- Performing an exact comparison of single pixel may be affected due to illumination variation solution:
 - Instead of single pixel difference, consider comparison of patches

September 23, 2019 IIT Madras

Notable drawbacks

• Smaller neighborhood 5×5 may not be enough to capture pose variations, partial occlusions

(Alternate) solution: increase the search space (horizontally up to full width)

- Performing an exact comparison of single pixel may be affected due to illumination variation solution:
 - Instead of single pixel difference, consider comparison of patches
 - \rightarrow Correlation between patches

September 23, 2019 IIT Madras

Notable drawbacks

• Smaller neighborhood 5 × 5 may not be enough to capture pose variations, partial occlusions

(Alternate) solution: increase the search space (horizontally up to full width)

- Performing an exact comparison of single pixel may be affected due to illumination variation solution:
 - Instead of single pixel difference, consider comparison of patches
 - \rightarrow Correlation between patches
 - Normalize the patches with mean, standard deviation before comparison

September 23, 2019 IIT Madras

Notable drawbacks

• Smaller neighborhood 5 × 5 may not be enough to capture pose variations, partial occlusions

(Alternate) solution: increase the search space (horizontally up to full width)

- Performing an exact comparison of single pixel may be affected due to illumination variation solution:
 - Instead of single pixel difference, consider comparison of **patches**
 - \rightarrow Correlation between patches
 - Normalize the patches with mean, standard deviation before comparison
 - \rightarrow Normalized correlation

Arulkumar S

Person Re-Identification & Patch Matching

 < □ > < ⊡ > < ≧ > < ≧ > < ≧ > ≧

 September 23, 2019
 IIT Madras

Counter-points to the baseline work Ahmed et. al (CVPR'15)

With wider search space, the ablation study conducted on different datasets of various sizes gives the following results:

Title	Ahmed	et. al, 5x5	search	Ahmed	et. al, 5x12	2 search
1110	r = 1	r = 10	r = 50	r = 1	r = 10	r = 50
CUHK03 labeled	54.74	93.3	99.7	57.60	90.63	99.17
CUHK03 detected	44.96	83.47	99.4	54.31	90.24	99.18
CUHK01 100 tests	65.0	94.0	99.9	69.7	95.03	99.13
CUHK01 486 tests	47.5	80.25	96.30	49.31	81.48	95.95

September 23, 2019

イロト イポト イヨト イヨト

33/58

э.

Normalized Correlation Matching layer

Normalized correlation (NCC)

Consider two arrays E, F with N-elements each. The normalized correlation between E and F is defined as,

$$normxcorr(E, F) = \frac{\sum_{i=1}^{N} (E_i - \mu_E) * (F_i - \mu_F)}{(N-1) * \sigma_E * \sigma_F}$$
(3)

where

$$\max \mu_E = \frac{\sum_{i=1}^{r} E_i}{N}$$
(4)
unbiased standard deviation $\sigma_E = \sqrt{\frac{\sum_{i=1}^{N} (E_i - \mu_E)^2}{N-1}}$ (5)

Δ1

The gradient of the normalized correlation matching is calculated as shown below:

$$\frac{\partial normxcorr(E,F)}{\partial E_i} = \frac{1}{(N-1)*\sigma_E} * \left(\frac{F_i - \mu_F}{\sigma_F} - \frac{normxcorr(E,F)*(E_i - \mu_E)}{\sigma_E}\right)$$
(6)

(a)

э

Normalized correlation (NCC)

Consider two arrays E, F with N-elements each. The normalized correlation between E and F is defined as,

$$normxcorr(E, F) = \frac{\sum_{i=1}^{N} (E_i - \mu_E) * (F_i - \mu_F)}{(N-1) * \sigma_E * \sigma_F}$$
(3)

where

$$\max \mu_E = \frac{\sum_{i=1}^{l} \frac{N_i}{N}}{N}$$
(4)
unbiased standard deviation $\sigma_E = \sqrt{\frac{\sum_{i=1}^{N} (E_i - \mu_E)^2}{N-1}}$ (5)

-N -

The gradient of the normalized correlation matching is calculated as shown below:

$$\frac{\partial normxcorr(E,F)}{\partial E_i} = \frac{1}{(N-1)*\sigma_E} * \left(\frac{F_i - \mu_F}{\sigma_F} - \frac{normxcorr(E,F)*(E_i - \mu_E)}{\sigma_E}\right)$$
(6)

NCC properties

Resilient to: Additive transformation $l(x, y) = l(x, y) + \lambda$, Multiplicative transformation $l(x, y) = \gamma l(x, y)$

Arulkumar Subramaniam, Moitreya Chatterjee, and Anurag Mittal. Deep Neural Networks with Inexact Matching for Person Re-Identification. Proceedings of the Neural Information Processing Systems (NIPS) - 2016.

September 23, 2019

IIT Madras

Normxcorr model

Arulkumar Subramaniam, Moitreya Chatterjee, and Anurag Mittal. Deep Neural Networks with Inexact Matching for Person Re-Identification. Proceedings of the Neural Information Processing Systems (NIPS) - 2016.

		-
Arul	kumor	~
Alu	Nullia	0

September 23, 2019 IIT Madras

(a)

Normalized Correlation Matching layer

NCC: Matching textures, undefined for texture-less surfaces

Arulkumar Subramaniam, Moitreya Chatterjee, and Anurag Mittal. Deep Neural Networks with Inexact Matching for Person Re-Identification. Proceedings of the Neural Information Processing Systems (NIPS) - 2016.

Arulkumar S

Person Re-Identification & Patch Matching

September 23, 2019

IIT Madras

Fused model

Arulkumar Subramaniam, Moitreya Chatterjee, and Anurag Mittal. Deep Neural Networks with Inexact Matching for Person Re-Identification. Proceedings of the Neural Information Processing Systems (NIPS) - 2016.

		<u> </u>
Arm	kumor	ч.
Alu	numai	0

September 23, 2019 IIT Madras

(a)

Method	ViPeR ¹	CUHK01 ²	CUHK03-labeled ³	CUHK03-detected	
Deep-kronecker-matching, CVPR-2018	-	-	91.1	91.0	-
Quadruplet Net, CVPR 2017	49.05	81.00	75.53	-	-
Imp. TripletNet, CVPR 2016	47.8	53.7	-	-	-
Subramaniam et al (NCC+CIN), NIPS 2016	-	81.23	72.43	72.04	19.20
Subramaniam et al (NCC), NIPS 2016	-	77.43	64.73	67.13	16.00
Ahmed et al (CIN), CVPR 2015	34.81	65.0	54.74	44.76	-
LOMO + XQDA, CVPR 2015	40.0	-	52.20	46.25	18.96
KISSME + PCA, CVPR 2012	19.6	-	-	-	-

Figure: Rank-1 identification rates for different datasets

⁴On-the-fly feature importance mining for person re-identification, PR-2014

Ares	kumor	0
Alu	Kumai	0

Person Re-Identification & Patch Matching

イロト イヨト イヨト September 23, 2019 IIT Madras 39/58

э

¹Viewpoint Invariant Pedestrian Recognition with an Ensemble of Localized Features, ECCV-2008

²Human Reidentification with Transferred Metric Learning, ACCV-2012

³DeepReID: Deep Filter Pairing Neural Network for Person Re-identification, CVPR-2014

Outline

Introduction

- Why matching images?
- Common theme & challenges

Person Re-Identification

- Task definition
- Person Re-Identification setup
- Solutions in Literature so-far
- Deep learning techniques
- Normalized correlation based matching layer

Extension to Patch matching

- Problem definition
- Extending NCC for Patch matching
- Network architectures
- Results

Summary

September 23, 2019

(1)

IIT Madras

Patch matching

- Patch Matching
 - fundamental task in Computer Vision
 - find correspondences of textured regions that are centered at distinctive keypoints

Same

Different

- Applications
 - Image Registration and Mosaicking
 - Stereo Matching
 - 3-D Reconstruction
 - Object tracking
- Challenges
 - photometric changes (illumination)
 - geometric changes (affine)

September 23, 2019

IIT Madras

41/58

(a)

Dataset

Same

Different

Dataset: Patches of 2D correspondences (64 x 64, ~250K same, ~250K different patch pairs) from 3D reconstructions of:

- Statue of Liberty
- Ontre Dame
- Yosemite

Evaluation procedure:

- Train on one dataset (e.g., Statue of Liberty),
- Test on other 2 datasets (Notre Dame, Yosemite)

Evaluation Criteria: FPR at 95% TPR (lower is better)

Dataset: Winder et al.. Learning local image descriptors. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) - 2007.

42/58

Existing approaches

- Hand-crafted techniques
 - Lowe et. al SIFT
 - other descriptors HOG, LTP, LBP, DAISY etc
 - Disadvantages:
 - Only applicable to specific challenges
 - Not suitable for generic / unpredictable scenarios
- Deep-Learning techniques
 - Zagoruyko et al. CVPR 2015 DeepCompare Various architectures such as Siamese, Central stream
 - Kumar et al. CVPR 2016 Global loss function & Triplet network

September 23, 2019 IIT Madras

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

> ≣

Outline

Introduction

- Why matching images?
- Common theme & challenges

Person Re-Identification

- Task definition
- Person Re-Identification setup
- Solutions in Literature so-far
- Deep learning techniques
- Normalized correlation based matching layer

Extension to Patch matching

- Problem definition
- Extending NCC for Patch matching
- Network architectures
- Results

Summary

September 23, 2019

(1)

IIT Madras

NCC for Patch Matching 5×5 window and 5×5 search space

- Notable change from Person Re-identification setup:
 - Search space is reduced to 5×5 (Reason: patches are normalized up to Similarity)

Arulkumar Subramaniam^{*}, Prashanth Balasubramanian^{*} and Anurag Mittal. NCC-net: Normalized cross correlation based deep matcher with robustness to illumination variations. IEEE Winter Conference on Applications of Computer Vision (WACV) - 2018.

September 23, 2019

Outline

Introduction

- Why matching images?
- Common theme & challenges

Person Re-Identification

- Task definition
- Person Re-Identification setup
- Solutions in Literature so-far
- Deep learning techniques
- Normalized correlation based matching layer

Extension to Patch matching

- Problem definition
- Extending NCC for Patch matching
- Network architectures
- Results

Summary

46/58

(1)

NCC for Patch Matching Siamese network

Figure: C(N,m,s) = Convolutional layer with N filters, each of size $m \times m$ and stride of s, M(n,s) = max-pooling layer, NCC(n, m) = NCC layer with support region $n \times n$ and $m \times m$ search space.

Arulkumar Subramaniam*, Prashanth Balasubramanian* and Anurag Mittal. NCC-net: Normalized cross correlation based deep matcher with robustness to illumination variations. IEEE Winter Conference on Applications of Computer Vision (WACV) - 2018.

Arulkumar S

Person Re-Identification & Patch Matching

September 23, 2019

IIT Madras

NCC for Patch Matching Central stream-Surround stream network

Person Re-Identification & Patch Matching

September 23, 2019

IIT Madras

Outline

Introduction

- Why matching images?
- Common theme & challenges

Person Re-Identification

- Task definition
- Person Re-Identification setup
- Solutions in Literature so-far
- Deep learning techniques
- Normalized correlation based matching layer

Extension to Patch matching

- Problem definition
- Extending NCC for Patch matching
- Network architectures
- Results

Summary

Λ	aller	1000		· •
AIL	ואוג	um	Idi	0

September 23, 2019 IIT Madras

IS

Train dataset	Liberty		Notredame		Yosemite		moon
Test dataset	Notredame	Yosemite	Liberty	Yosemite	Liberty	Notredame	mean
Siam-NCC-Net(ours)	1.25	2.03	3.87	1.86	5.16	1.8	2.66
Siam-w/oMP ₂ -NCC-Net(ours)	1.14	2.30	4.02	2.34	4.71	1.81	2.72
CS-NCC-Net(ours)	1.24	3.09	5.99	4.22	6.54	2.06	3.86
CS-w/oMP ₂ -NCC-Net(ours)	1.17	2.19	4.28	2.30	4.81	1.7	2.74
2ch-CS stream GLoss	0.77	3.09	3.69	2.67	4.91	1.14	2.71
2ch-CS stream	1.9	4.75	4.55	4.1	7.2	2.11	4.10
Siamese GLoss	1.84	6.61	6.39	5.57	8.43	2.83	5.28
TFeat	3.12	7.82	7.22	7.08	9.79	3.85	6.48
PNNet	3.71	8.99	8.13	7.1	9.65	4.23	6.97
DeepCompare-Siam CS-stream	3.05	9.02	6.45	10.45	11.51	5.29	7.63
MatchNet	4.75	13.58	8.84	11.00	13.02	7.7	9.81
DeepCompare-Siam	4.33	14.89	8.77	13.23	13.48	5.75	10.07
VGG-Convex	7.52	11.63	12.88	10.54	14.82	7.11	10.75

Table: FPR95 scores of the proposed models and the baselines. These being False Positive Rates (FPR), lower their values, better is their performance. Testbed: UBC Patches dataset. Color coding : red - best performing method, blue - next best performing method (Training : 500K pairs, Testing: 100K pairs)

- 日本 - 「同本 - 日本 - 日本 - 日本

Results

Experiments for illumination changes Manual variation of pixel intensities

Affine-transformation based illumination variation:

$$I_i(x,y) = A.I(x,y) + B$$
, where $A = \frac{N-i}{N}$, $B = \frac{i\mathbb{E}}{N}$

where $\mathbb{E}=0$ or 255 based on under- or -over saturation

Arulkumar Subramaniam^{*}, Prashanth Balasubramanian^{*} and Anurag Mittal. **NCC-net: Normalized cross correlation based deep matcher with robustness to illumination variations**. IEEE Winter Conference on Applications of Computer Vision (WACV) - 2018.

Person Re-Identification & Patch Matching

September 23, 2019

IIT Madras

51/58

(7)

Experiments for illumination changes Manual variation of pixel intensities

Figure: Impact of changing pixel intensities on the matching performance. Here the illumination change is induced by the affine-based variation of intensities ・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト э

Person Re-Identification & Patch Matching

September 23, 2019

52/58

IIT Madras

Extension to Patch matching

Results

Experiments for illumination changes Manual variation of pixel intensities

Figure: Impact of changing pixel intensities on the matching performance. Here the illumination change is induced by the affine-based variation of intensities ・ロット 小型マン キリマ

Person Re-Identification & Patch Matching

September 23, 2019

53/58

IIT Madras

Results

Experiments for illumination changes Tests on Natural intensity changes

Figure: Typical natural illumination variations noticed in the Webcam dataset (category: Mexico)

Train dataset	Siam- NCC- Net(ours)	Siam- w/oMP ₂ -NCC- Net(ours)	CS-NCC- Net(ours)	CS- w/oMP ₂ - NCC- Net(ours)	2ch-CS- stream GLoss	2ch-CS stream	Siam	Siam-CS stream
L	9.67	9.45	11.37	11.35	12.31	12.31	31.45	27.08
Ν	16.68	12.56	23.04	19.30	20.01	17.84	28.21	32.17
Y	11.67	10.56	15.40	18.28	14.76	19.5	35.21	34.65

Table: Color coding : red - best performing method, blue - next best performing method.

Summary

In this seminar

- Adaptation of NCC to match images/patches in Deep learning framework
- The matching method is generic
- can be applied to other computer vision tasks Current/Future work

September 23, 2019 IIT I

イロト イヨト イヨト

IIT Madras

э

Summary

In this seminar

- Adaptation of NCC to match images/patches in Deep learning framework
- The matching method is generic
- can be applied to other computer vision tasks Current/Future work

Current line of Research

- Background clutters and mis-alignment errors in person re-identification
 - Arulkumar Subramaniam, Athira Nambiar, and Anurag Mittal. Co-segmentation Inspired Attention Networks for Video-based Person Re-identification. Proceedings of the International Conference on Computer Vision (ICCV) - 2019.
- Multi-modal person re-identification methods (RGB-IR (night-vision), Text based)

		_
A	CUIDO O C	
	ALILLIAL.	
	- contract	-

September 23, 2019 IIT Madras

イロト イヨト イヨト

Arulkumar Subramaniam*, Ajay Narayanan*, and Anurag Mittal. Feature Ensemble Networks with Re-ranking for Recognizing Disguised Faces in the Wild. Proceedings of the International Conference on Computer Vision Workshop (ICCVW) - 2019 on Recognizing Disguised Faces in the Wild.

Arulkumar Subramaniam, Athira Nambiar, and Anurag Mittal. Co-segmentation Inspired Attention Networks for Video-based Person Re-identification. Proceedings of the International Conference on Computer Vision (ICCV) - 2019. Seoul, South Korea.

Arulkumar Subramaniam*, Prashanth Balasubramanian*, and Anurag Mittal. NCC-Net: Normalized Cross Correlation Based Deep Matcher with Robustness to Illumination Variations. IEEE Winter Conference on the Applications of Computer Vision (WACV) - 2018. Nevada, United States.

Arulkumar Subramaniam, Moitreya Chatterjee, and Anurag Mittal. Deep Neural Networks with Inexact Matching for Person Re-Identification. Proceedings of the Neural Information Processing Systems (NIPS) - 2016. Barcelona, Spain.

Arulkumar Subramaniam*, Vismay Patel*, Ashish Mishra, Prashanth Balasubramanian, and Anurag Mittal. Bi-modal First Impressions Recognition using Temporally Ordered Deep Audio and Stochastic Visual Features. Proceedings of the European Conference on Computer Vision Workshop (ECCVW) - 2016 on Apparent Personality Analysis. Amsterdam, The Netherlands.

September 23, 2019

IIT Madras 56/58

イロト イポト イヨト イヨト

Thank you!

September 23, 2019

IIT Madras

2

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <