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Abstract
The task of matching image patches is a fundamental

problem in computer vision. When sufficiently textured
patches are normalized up to similarity transformation, a
simple Normalized Cross Correlation (NCC) of correspond-
ing patches will give a high value. In practice, using it on
patches per se may not perform well due to the noisy vari-
ations of pixel intensities. A more prudent approach will
be to apply it to the abstract features extracted by a deep
convolutional network. We study the applicability of an NCC
based convolutional network for the task of Patch Match-
ing. Further, there may be cases where the network may fail
due to insufficient textures. In those cases, a simple pixel
difference based method will be beneficial.

To this end, we propose to improve the two basic archi-
tectures, Siamese networks and Central-Surround stream
networks, using robust matching layers for learning the sim-
ilarities of patches, assisted by a simple cross-entropy loss
function. We empirically verify the performance of the pro-
posed models on the challenging UBC Patches dataset and
show that they are close to the state-of-the-art. Further, we
evaluate their resilience to large illumination changes in two
experimental scenarios: 1) by manually varying the patches
of UBC Patches by an affine model 2) by using the publicly
available Webcam dataset. We demonstrate that our models
are indeed very resilient to illumination variations; they re-
duce the false positive rate to nearly 10%, and improve over
the popular methods by nearly 5%. Further, we demonstrate
the generalisability of the proposed NCC based matching
layer by applying it to Face Recognition and show that it
improves the performances of well known networks on a
real-world, surveillance dataset.

1. Introduction and Related Work
Patch Matching is one of the most fundamental tasks

of Computer Vision. It aims to find correspondences of
localized, textured regions which are usually centered at
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distinctive keypoints. The matching has to be robust across
many geometric and photometric changes as it is used as an
indispensable subroutine in many problems such as Image
Registration and Mosaicking[11], Stereo Matching[45], 3-D
Reconstruction[1], and Object Tracking[44], to name a few.

There is a large body of work on Patch Matching, and it
will be beyond the scope of this paper to survey all of them.
However, they can be broadly classified into 3 categories, by
virtue of their techniques: 1) those using hand-crafted de-
scriptors, 2) those predicting the correspondences based on
non-deep machine learning methods, and 3) those predicting
based on deep neural networks.

Hand-crafted techniques : The aim, here, is to hand-
design descriptors that are robust to photometric and ge-
ometric challenges. A seminal work in this direction is
Lowe’s SIFT[24], following which other methods have been
proposed that improve either its computational efficiency[13,
40, 8, 31, 20] or its performance by alternative strategies
[22, 31, 29, 4, 37, 17, 38].

Non-deep Machine Learning techniques : Though im-
pressive, hand-crafted descriptors can be limited in their
applicability when the challenges become generic and un-
predictable, especially with the availability of large sets of
images taken in differing conditions. Learning to match
the patches is an attractive and a natural alternative to it. A
notable attempt was made by Brown et al.[10] who learned
robust descriptors that performed much better than SIFT. A
large dataset of patches[12] was also made available by them.
Trzcinski et al.[38] learned discriminative descriptors based
on boosting, while Simonyan et al.[33] proposed convex
learning techniques to build robust descriptors.

Deep-Learning techniques : An appreciable attempt to
use CNNs for Patch Matching was made by Zagoruyko
and Komodakis[43] who studied various architectures to di-
rectly learn the underlying matching function from the pixels.
Serra et al.[32] proposed the MatchNet, a Siamese network
with sparse connections between the layers such that the



mean number of connections of an input layer is nearly con-
stant. Zbontar and LeCun[45] designed a CNN-based stereo
matcher for small baselines and obtained the best results
on the KITTI dataset. Balntas et al.[5, 7] proposed a CNN
using a triplet-based loss function. They aim to increase the
speed of descriptor computation and decrease its memory
footprint. Kumar et al.[21] also propose a global loss that
aims to decrease the intra-class variances and increase the
inter-class distance; here, the similar and dissimilar pairs
constitute the binary classes.

In our work, we make use of normalized cross-
correlation(NCC) which is a statistical technique to measure
how two signals vary together. When the patches are scale
and orientation normalized, the features extracted after suc-
cessive convolutions and pooling may have little noise in
them; hence, it will be prudent to apply NCC on these feature
maps as a measure of similarity between the input images.
An earlier work on Person Re-identification[35] has shown
state-of-the-art results using NCC based networks. Further,
in cases where it may fail (viz. an image with insufficient
textures), an additional matching layer[2] that is based on
simple pixel differences is used.

We propose two deep neural network architectures for
the task of Patch Matching, one based on Siamese networks
and the other on Central-Surround stream networks. In these
models, the two aforesaid matching layers are combined
and are trained with a simple, no-frills cross-entropy loss
function. We verify their performance on the challenging
UBC Patches dataset and show that they remain close to
the performance of the current state-of-the-art, L2−Net[36],
while improving over the others [21, 32, 42, 43]. Further,
we evaluate their resilience to large illumination changes by
empirically demonstrating on two experimental setups: 1)
manual variation of the pixel intensities of the patches in
the UBC Patches dataset. 2) natural illumination changes
from the real-world, publicly available Webcam dataset. Our
models achieve an error rate as low as 10%, improve over the
performances of popular patch matchers[43, 32, 21] by as
much as 5% and achieves near-state-of-the-art performance.

Additionally, to demonstrate the generalization ability
of the proposed NCC based matching layer, we test it in
the task of Face Recognition. We observe an increase in
performance when the matching layer is used on the feature
maps from well-known Face Description networks[3, 30] on
a real-world, surveillance dataset[16].

The paper is organized as follows: Section 2 describes the
two proposed architectures that use robust matching layers
to estimate the similarities of patches. Section 3 outlines
the three experimental setups, the datasets and their results,
followed by detailed analyses. Section 4 describes the ap-
plicability of the proposed NCC based matching layer to
the task of face recognition which extends the scope of its
utility. Section 5 concludes the paper by summarizing it and

providing possible future directions to it.

2. Methodology
In this section, we propose and discuss two CNN-based

architectures that learn to predict the similarity of a given
pair of image patches. The task is formulated as an instance
of a 2−way classification problem, the classes being similar
and dissimilar pairs.

2.1. Brief description of NCC

Normalized Cross-Correlation(NCC) is a statistical mea-
sure of the tendency of two signals to vary linearly with each
other. It is given by

NCC(X,Y ) =
1

N − 1

N∑
i=1

(Xi − µX)(Yi − µY )

σXσY
(1)

where N is the number of samples, (µX , µY ) and (σX , σY )
denote the means and the unbiased standard deviations of
signals X and Y .1 It ranges in between [−1, 1] such that
when X and Y are linearly correlated its absolute value is
large, and small when they are uncorrelated. Thus, when the
pixels of two input patches vary in a similar manner, their
NCC is large. As the patches under consideration are usually
small, typically 64× 64 pixels, their pixel variations can be
taken to be uniform, and hence NCC is used as a measure of
similarity.

While NCC can be applied directly on the pixel values,
it can also be used on the features extracted from them.
The latter is preferred as it remains robust to the pixel-level
artifacts that occur, say, image noise. So, when included
as a layer in a deep network, it operates on its feature map
inputs, computes their NCC coefficients, and passes them to
the neurons further downstream in the architecture. In such
a case, the NCC layer acts as a “natural matcher", implicitly
measuring the similarity of the input patches. Further, it is
differentiable with respect to its inputs[35] and hence can
back-propagate the gradients.

2.2. Robust Matching layers

NCC for Patch Matching : Given two feature maps, NCC
can be used to measure their similarity. Nevertheless, it will
be more beneficial to study the similarities of the various
smaller regions(termed as support regions) that constitute the
feature maps. Such an approach helps the network to learn
from the correlations between the finer features that reside
in the support regions. For example, the finer features may
be corners, junction points, strong edges or ramps which
usually serve as distinguishing characteristics.

Let P,Q denote the input feature maps of the NCC layer.
A support region defines a spatial extent whose pixel-values

1In practice, a small ε = 0.01 is added to the standard deviations for
numerical stability.
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Figure 1: Illustrations of support regions. Using NCC, a support
region ω

P (x,y) on the left is compared with multiple, neighboring
support regions ω

Q(.,.) on the right. Each ω
Q(.,.), on the right, is

centered at a green pixel. Comparing a support region with multiple
neighboring regions, as shown here, helps the network to learn the
patterns from a large neighborhood. The NCC between P and Q
results in an NCC feature map, shown in the bottom row.

are considered for the computation of an NCC score. Thus,
the support region, ω

P
(x, y), centered at (x, y) in P is de-

fined as
ω

P
(x, y) = {x− 2, . . . , x+ 2}

×{y − 2, . . . , y + 2} (2)

where x ∈ {1, . . . ,W} and y ∈ {1, . . . ,H} vary over
the width W and height H of feature map P (0− padding
inherently assumed).

Further, it may be unnecessary to compare, exhaustively,
all the support regions of a feature map with those of the
other. Apart from its computational expense, such a com-
parison is also redundant as distant region-pairs need not be
corresponding to each other. Thus, a support region from the
first feature map, P , is compared only with its neighboring
support regions from the second feature map, Q.

The support regions from the second feature mapQwhich
are considered for computing the NCCs with the values at
ω

P
(x, y) are formed from a small tx × ty neighborhood

of (x, y). Let Ψ
Q

(x, y) denote such support regions in Q.
Then,

Ψ
Q

(x, y) =
{
ω

Q
(x+ δx, y + δy)

}
(3)

where δx ∈ {−tx,−tx + 1, . . . , tx}, δy ∈
{−ty,−ty + 1, . . . , ty}. tx and ty are hyper-parameters.
Thus Ψ

Q
(x, y) defines the set of support regions from map

Q, each of which will be used to compute an NCC score
with ω

P
(x, y) from map P . Figure 1 pictorially depicts

ω
P

(x, y) and Ψ
Q

(x, y). The values of tx, ty have to be

chosen with care. Essentially, Ψ
Q

(x, y) can be viewed as
the “search space” to which the features resident in ω

P
(x, y)

could have moved under a variation. Too small a choice for
tx, ty, the features may be missed, and too wide a choice,
the search can become computationally burdensome. In our
experiments, we found tx, ty = 2 to work well.

The choice of considering a square search space (i.e. tx =
ty) is motivated by the problem under consideration. In
Patch Matching, it is assumed that a feature may move in
any direction, and no preference to any particular direction
can be ascribed. This can also be seen in many classical
works which consider a square ([24, 8]), or more generally,
an isotropic(i.e. a circular)([26, 9]) region to build their
descriptors.

With the above settings, every support region ω
P

(x, y)
is compared with 25 of their neighboring support regions
ω

Q(.,.) and hence yield 25 NCC values, see Figure 1. By
repeating this for every (x, y) of P , all of the 25 NCC val-
ues are concatenated in a specific order to yield 25 “NCC”
feature maps of the same width and height as P and Q.
CIN for Patch Matching : Although the patches are ex-
pected to have sufficient textures, there may arise some
pathological cases which lack them. In such cases, NCC
is unreliable as σX or σY vanishes . As a remedy, it is fused
with the Cross-input Neighborhood(CIN)[2] layer. CIN
builds "difference maps" between every pixel of a feature
map and a neighborhood window (5×5) of its corresponding
feature map. The idea is to help the network learn discrimi-
native features from absolute pixel2 differences.

2.3. Proposed architectures for Patch Matching

In this section, we present two deep neural network ar-
chitectures for Patch Matching. Both these architectures
include the matching layers discussed above for learning the
similarity between the patches. They differ in the way the
input patches are handled.
Siamese architecture : Given two image patches each of
size 64×64×1, a Siamese architecture seems to be a natural
choice to compare them. The proposed Siamese model is
shown in the Figure 2. The network consists of two input
branches of shared weights which accept the pair of im-
age patches to be matched. The image patches are passed
through two convolution layers, C(32, 5, 1) and C(96, 5, 1),
having 32 and 96 feature maps, each followed by a ReLU
activation and a max-pooling layer, M (2, 2). For an explana-
tion of the notations and network architecture, refer Figure
2.

The resulting pair of abstract features after M(2, 2)
of size 13 × 13 × 96 are passed through the match-
ing layers. In the NCC layer, each of the 96 feature
maps of the top branch is compared with its counter-
part from the lower branch as described in Section 2.2.

2Here, a pixel refers to a location on a feature map.



This yields 2400 feature maps (96 input feature maps ×
25 NCC maps per input feature map), each of size 13× 13.
In a similar way, CIN comparison yields 4800 feature maps
(96 input feature maps × 25 CIN maps per input feature
map × 2 (being asymmetric)) each of size 13 × 13. The
outputs from the matching layers are passed through two
more convolution layers followed by a max-pooling layer
for summarization. After summarization, the responses are
passed through a fully connected layer of 500 neurons each
and followed by a softmax classification layer with 2 nodes
which predict whether the given patches are similar or not.
We call this model as Siam-NCC-Net.

As the inclusion of 2 max-pooling layers reduces the input
dimensions by 4, some fine textures present in the feature
maps may be lost in this process. To avoid this, we pro-
pose a minor variant of Siam-NCC-Net in which the second
max-pooling layer, M2(2, 2) is discarded. We call this mod-
ified network as Siam-w/oMP2-NCC-Net. Its architecture
diagram is provided in the supplementary material.

2-Stream (or) Central-Surround (CS) stream architec-
ture : A patch which is extracted from an image is usually
localized around a keypoint and provides characteristic in-
formation about it. Thus, the pixels near the keypoint convey
properties of the patch which are more specific and reliable
than those from the distant ones. In the classical methods
such as SIFT[24], this is modeled by weighting the pixels
with an appropriate Gaussian whose mean is at the center
of the patch. Zagoruyko and Komodakis[43] model this by
supplying two kinds of inputs to the network: the first crops
the input patch-pairs around their centers to the size 32× 32,
and the second downsamples them to 32× 32. Such a model
which explicitly matches the central portion of the patches
was shown to improve the baselines.

In a similar spirit, our second proposed architecture con-
tains two parallel Siamese networks; one explicitly matches
the central portion of the image patches (of size 32×32), the
other matches the downsampled patch-pairs of size 32× 32.
The network architecture is depicted in the figure 3. We call
this network as CS-NCC-Net. Further, we obtain a minor
variant of CS-NCC-Net by discarding M2(2, 2) to preserve
finer textures in the feature maps. We term this model as
CS-w/oMP2-NCC-Net and its network diagram is provided
in the supplementary version.

3. Datasets, Experiments and Results

UBC Patches dataset : This dataset[12] has been intro-
duced by Brown et al.[10] wherein the keypoint correspon-
dences have been identified with multi-view, stereo con-
straints. The dataset contains 3 subsets - Liberty, Notredame,
Yosemite, each of which contains 500, 000 similar and dis-
similar pairs of training patches and 100, 000 pairs of testing
patches. We followed the standard procedure [10] of training
on a 500K set and testing on the other two 100K sets.

Training : The 500K pairs were randomly split in a 90 :
10 ratio of training and validation sets. The 50K validation
data was used for early stopping, to avoid over-fitting. The
models were trained using mini-batch Stochastic Gradient
Descent(SGD) with a batch size of 128. The standard cross-
entropy loss given by

L = − 1

N

N∑
i=0

(ti log pi + (1− ti) log(1− pi)) (4)

was used as the objective function. Here, N is the batch size,
ti ∈ {0, 1} specifies the target (same=0 or different=1) and
pi denotes the ‘same’ probability given by softmax,

pi =
eai0

eai0 + eai1
(5)

where aij is the logit of the neuron j in the final layer for
example i of the batch. The initial learning rate was set as
0.05, its decay as 10−4, momentum as 0.9 and the weight
decay as 5× 10−4. Weights were initialized randomly and
the models were trained anew. The implementation was
done in Torch[14] and is available online[34]. The training
was done on NIVIDA Titan GPUs, with the code spawning
threads across multiple GPUs to speed up the training phase.
The training was conducted for nearly 60 epochs. The best
performing model (Siam-NCC-Net) has ∼3.3M parameters
and takes ∼2.9 ms for matching a pair of image patches.
Data augmentation : Each pair underwent one of the se-
lected random transformations during training. The trans-
formations included rotations by 90◦, 180◦, 270◦, flipping
horizontally and vertically. This augmentation strategy is
also followed in [21, 43].
Evaluation Protocol : We measure the performance of
the methods by counting their false positives and true posi-
tives, and expressing them on the ROC graph(false positive
rate(FPR) vs. true positive rate(TPR)). We consider the prob-
ability score given by the “same” softmax neuron in the final
layer as the similarity score for the given pairs. An accept-
able operating region on this plot is when the TPR≥ 0.95 (at
least 95% of the correspondences are successfully matched),
and we report the FPR when TPR = 0.95. This is called as
the FPR95 score; lower the score, better the matcher.

3.1. Results on UBC Patches

Table 1 shows the comparative performances of various
methods on the challenging UBC Patches dataset. We ob-
serve that our proposed models are close to the state-of-
the-art[36] in many of the cases while being better than the
popular, oft-used or recent works such as [21, 32, 42, 42].
The learning outcomes are as follows.

Firstly, the Siamese networks in the literature[43, 21]
have generally been below par when compared with the
CS-stream architectures, probably due to the sub-optimal
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Figure 2: Siam-NCC-Net architecture. Here, C(N,m,s) refers to a Convolutional layer consisting of N filters, each of size m×m and a
stride of s pixels, M(n,s) refers to a max-pooling layer that operates on a window of size n× n and a stride of s pixels, NCC(n, m) refers to
an NCC layer that matches a support region of size n× n centered at any pixel with its m×m search space, CIN(m) refers to an CIN layer
with a search space of size m×m, FC(n, m) refers to a fully-connected layer with n inputs and m outputs. The diagram is best viewed in
color on a display device.
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Figure 3: CS-NCC-Net architecture with NCC and CIN matching layers. The notations are same as those in Figure 2. (Best viewed in
color on a display device.)

learning of the underlying matching function (compare Siam
vs. Siam CS-Stream in Table 1). From the results in Ta-
ble 1, we observe that Siam-NCC-Net improves over Siam
and Siamese GLoss by about 7% and 3% in the mean er-
ror respectively. Further, it performs better than the CS
stream counterparts(2ch-CS stream GLoss, Siam CS-stream)
in many cases and on par with them in the others. This
reveals that robust matching techniques in conjunction with
the Siamese networks empower them to perform better than
their vanilla versions.

Secondly, the said observation may suggest that the
matching layers can also be combined with the CS-stream
architectures to improve their performance. Nonetheless, our
experimental results suggest that this may not be so straight-
forward. A direct adaptation of Siam-NCC-Net as a CS
stream (CS-NCC-Net) did not yield a competitive perfor-
mance. In fact, it increased the mean error by nearly 1.2%
(see CS-NCC-Net in Table 1). This could be due to the low-
resolution (8× 8) feature maps yielded by M2(2, 2) which
may not contain sufficient textures for the matching layers
to cue upon. To overcome this problem, CS-w/oMP2-NCC-
Net outputs larger maps (16× 16) by eliminating M2(2, 2).
This reduces the mean error by about 1% (see in Table 1).

This asserts that it is important to retain sufficiently large
maps for the matching layers to learn from. In a similar spirit,
we eliminated M2(2, 2) from Siam-NCC-Net to increase
the feature map resolutions. We observed that its perfor-
mance remains similar to that of Siam-NCC-Net, although
it helps significantly in overcoming illumination variations,
refer Section 3.3.

3.2. Performance on HPatches dataset

We compare the performance of our best perform-
ing model(Siam-w/oMP2-NCC-Net) with the recent deep-
learning based works in the literature using the HPatches
dataset[6]. The quantitative results for the dataset can be
found in the supplementary material and our source code
repository[34].

3.3. Robustness to illumination changes

Illumination changes are a common occurrence and yet
remain challenging for a patch matcher. Common techniques
to counter this include mean subtraction as seen in some deep
network based methods[43]. Such a simple scheme can, nev-
ertheless, be improved with NCC. In order to study the effect
of illumination changes, we carried out experiments specifi-



Train dataset Liberty Notredame Yosemite
mean

Test dataset Notredame Yosemite Liberty Yosemite Liberty Notredame

Siam-NCC-Net(ours) 1.25 2.03 3.87 1.86 5.16 1.8 2.66
Siam-w/oMP2-NCC-Net(ours) 1.14 2.30 4.02 2.34 4.71 1.81 2.72

CS-NCC-Net(ours) 1.24 3.09 5.99 4.22 6.54 2.06 3.86

CS-w/oMP2-NCC-Net(ours) 1.17 2.19 4.28 2.30 4.81 1.7 2.74

L2-Net [36] 0.56 2.07 1.71 1.76 3.87 1.09 1.84
DeepCD [42] 2.59 7.03 5.85 6.69 7.82 2.95 5.49

2ch-CS stream GLoss [21] 0.77 3.09 3.69 2.67 4.91 1.14 2.71

2ch-CS stream[43] 1.9 4.75 4.55 4.1 7.2 2.11 4.10

Siamese GLoss[21] 1.84 6.61 6.39 5.57 8.43 2.83 5.28

TFeat [7] 3.12 7.82 7.22 7.08 9.79 3.85 6.48

PNNet[5] 3.71 8.99 8.13 7.1 9.65 4.23 6.97

Siam CS-stream[43] 3.05 9.02 6.45 10.45 11.51 5.29 7.63

MatchNet[32] 4.75 13.58 8.84 11.00 13.02 7.7 9.81

Siam[43] 4.33 14.89 8.77 13.23 13.48 5.75 10.07

VGG-Convex[33] 7.52 11.63 12.88 10.54 14.82 7.11 10.75

Table 1: FPR95 scores of the proposed models and the baselines. These being False Positive Rates (FPR), lower their values, better is their
performance. Testbed: UBC Patches dataset[10]. Color coding : best, second best.

U(8) U(6) U(3) U(0) O(3) O(6) O(8)
Figure 5: Each column shows the varying degree of intensity
change introduced to a corresponding pair from UBC Patches
dataset[12]. Notations as in Figure6.

cally to validate the models when such changes occur. We
devise two experiments, one by manually varying the inten-
sities of the images from the UBC Patches dataset[10] by an
affine model; the other by using the Webcam dataset[39, 19]
which captures various outdoor scenes at different times of
day and seasons, thus exhibiting illumination variations in a
natural way.

Manual variation of intensities : To emulate the illumi-
nation variations manually, we vary the pixel intensities of
one patch in every pair of the 100K test set[12] in such a
way that each pixel progressively gets either under- or over-
saturated. We formulate an illumination model as follows:
The modified pixel value, Ii(x, y), at the step i is given by:

Ii(x, y) = I(x, y) +

(
i ∗ (E− I(x, y))

N

)
(6)

Here N(= 10) denotes the number of steps towards satura-
tion with 0 ≤ i ≤ N , I(x, y) ∈ {0, . . . , 255} is the input
pixel value, E ∈ {0, 255} is a saturation point for the in-
tensities. Setting E = 0 under-saturates the pixels whereas

having E = 255 over-saturates them, see Figure 5. Equation
6 can be viewed as an affine model such that

Ii(x, y) = A.I(x, y) +B, where A =
N − i

N
,B =

iE
N

(7)

In Figure 6, the matching performance of the methods is
plotted against the change in pixel’s intensities. FPR95 is
used as the metric. We notice that all the methods gradually
worsen with an increase in the saturation of the intensities.
SIFT, being hand-engineered, is uniformly lower than other
CNN-based methods but remains fairly invariant to illumi-
nation changes; the additive term B is eliminated during its
gradient-computation step and the multiplicative term A is
compensated for in its unit normalization step.

The impact of the intensity changes seems to be severe
on the 2ch-CS stream GLoss [21] which sharply degrades
outside of [U(5), O(5)]. The reason could be that the global
loss training has unintentionally caused the network to over-
fit for well-lit patches and so it fails to generalize when
the intensities of the pixels are varied. 2ch-CS stream [43]
begins to degrade outside of [U(4), O(4)]. Ours and the
recently proposed L2-Net [36] seem to be more resilient
than the others throughout the illumination axis. This simple
experiment helps to demonstrate the effectiveness of the
proposed models when strong illumination variations occur.
The plots for other combinations of training and test sets are
available in the supplementary material.
Test under natural illumination changes : The Webcam
dataset has outdoor images collected from web cameras that
remain fixed in several locations for different times of day
and various seasons[39, 19]. The images are timestamped for
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Figure 6: Impact of changing pixel intensities on the match-
ing performance. Here the illumination change is induced by
the models, U(i) : Ii(x, y) = (N−i)∗I(x,y)

N
, O(i) : Ii(x, y) =

(N−i)∗I(x,y)
N

+ iE
N

. Here, U = under-saturation region, O = over-
saturation region. Testbed: UBC Patches dataset[10].

a period of 100 days at 6 locations. The dataset exhibits nat-
ural illumination changes (morning, evening, sunny, cloudy,
snowy etc.,). We extract a total 262, 152 pairs of similar
and dissimilar patches (each constitutes 50% of the total).
The procedure that we followed to curate the test data is de-
scribed, in detail, in the supplementary material. The dataset
can be obtained from our source code repository[34].

The models trained on the UBC Patches dataset [12]
have been used to test the Webcam patches, without any
re-training or fine-tuning. The performance is evaluated in
terms of FPR95 and is shown in Table 2. There are a few
observations from these results which we discuss below.

Firstly, the performances of the proposed CS-stream net-
works, as seen in Figure 6 and Table 2, are generally lower
than that of their Siamese counterparts. This could be due
to the fact that the CS-stream networks use images that are
either at lower resolution(surround stream) or that lack con-
text(central stream), both of which can get affected during
illumination variations.

Secondly, the proposed Siamese models seem to cope
up with the challenges fairly well. We observe from Ta-
ble 2 that Siam-NCC-Net improves over 2ch-CS-stream
GLoss and 2ch-CS stream by about 3% to 4%, while Siam-
w/oMP2NCC-Net improves by about 5%. It is interesting
to note that these models are tolerant even when extreme
changes in illumination occur, for example see U(8) and O(8)
of Figure 5. At these points on the plots (Figure 6), we no-
tice that FPR95 of Siam-w/oMP2NCC-Net is about 10%,
whereas many of the other methods’ seem to be ≥ 20%.
This is due to the ability of the proposed matchers to extract
and match the textures even at large illumination conditions.
Some example visualizations of images at different illumina-
tion levels are shown in the supplementary material. Further,
L2-Net[36], seems to be doing well on this dataset, although
there is no consistent winner(between the proposed models

and L2-Net across the 3 datasets. This merits a further
exploration.

The effectiveness of the proposed matching layers is read-
ily apparent when the performances of the vanilla Siamese
networks (Siam, Siam-CS stream) are taken note of. Al-
though the latter models have performed reasonably well
in the UBC Patches dataset (refer Table 1), their perfor-
mances have degraded significantly when strong illumina-
tion changes are present. This invites further exploration on
improving the generalization capability of these networks.
We also observe from the Figure 6 and Table 2 that eliminat-
ing M2(2, 2) generally helps in improving the tolerance to
illumination changes. During large illumination variations,
the pixels of the feature maps could saturate unevenly. Ap-
plying max-pool on regions around the saturated pixels will
only return saturated values. This could potentially elimi-
nate some finer textures in its vicinity which may be useful
in matching. Hence, discarding a max-pool layer helps in
preserving them during illumination changes. Overall in
our analysis, Siamese architectures seem to be doing bet-
ter than the CS-stream architectures, especially when the
illuminations changes are significant.

Ablation study: We further tested the performance of the
individual matching layers(NCC and CIN alone) on the UBC
Patches dataset[10] and summarize the scores in Table3. We
notice that NCC performs nearly as good as the combination
while CIN’s individual false alarm rates are much higher.

We further tested if augmenting the training set(apart
from geometric augmentation) by explicitly modifying the
illumination of the patches would help the networks be
more resilient to such changes. One of every pair of input
training patches of the UBC Patches was randomly over-
saturated or under-saturated by the affine model in Equation
6. We retrained the networks proposed by Zagoruyko and
Komodakis[43] on this augmented set and the performances
are noted in Table 4. As expected, many of the scores have
improved after being retrained on the augmented set. Nev-
ertheless, such an augmentation may be seen more as an
ad-hoc than as a robust approach, especially in a real-world
setting wherein the changes due to illumination can tend to
be more complex than being an affine modification.

4. Application to Face-Recognition
Face Recognition is the task of finding the right identity

of the given probe image from a set of gallery images. Con-
ventionally, discriminative features such as LBP and HOG
were used to learn a discriminative metric between identities.
Due to recent innovations in Deep Learning models, the us-
age of deep image descriptors [30, 3] has become prevalent
in Face Recognition. Although the deep learning models
exhibit a super-human level performance in datasets such as
LFW[18], YTF[41], Celeb-A[23], the practical application



Train Siam-
NCC-
Net(ours)

Siam-
w/oMP2-
NCC-
Net(ours)

CS-NCC-
Net(ours)

CS-
w/oMP2-
NCC-
Net(ours)

2ch-CS-
stream
GLoss [21]

2ch-CS
stream[43]

Siam[43] Siam-CS
stream[43]

L2 Net

L 9.67 9.45 11.37 11.35 12.31 12.31 31.45 27.08 9.67
N 16.68 12.56 23.04 19.30 20.01 17.84 28.21 32.17 9.21
Y 11.67 10.56 15.40 18.28 14.76 19.5 35.21 34.65 16.11

Table 2: Results on the Webcam dataset[39, 19]. FPR95 scores of the proposed models and the baselines[43, 21]. These being False
Positive Rates (FPR), lower their values, better are their performances. Datasets trained from: L-Liberty, N-Notredame, Y-Yosemite. Scores
obtained from 262, 152 test patch-pairs.

Train L N Y
Test N Y L Y L N

NCC 1.23 1.78 4.17 2.24 4.98 2.00

CIN 1.87 5.40 5.27 4.55 7.34 3.11

Both 1.14 2.30 4.02 2.34 4.71 1.81

Table 3: FPR95 scores when using the individual matching layers
in Siam-w/oMP2-NCC-Net. These being False Positive Rates
(FPR), lower their values, better is their performance. Testbed:
UBC Patches dataset[10]. L - Liberty, N - Notredame, Y - Yosemite

Train L N Y
Test N Y L Y L N

2ch-CS
stream+

1.82 3.73 2.85 2.56 5.99 1.34

Siam CS-
stream+

3.56 9.29 6.46 9.56 11.53 5.47

Siam+ 6.59 11.92 7.98 12.07 13.43 8.36

Table 4: FPR95 scores of DeepCompare[43] networks retrained
on augmented UBC Patches dataset[10]. These being False Positive
Rates (FPR), lower their values, better is their performance. L -
Liberty, N - Notredame, Y - Yosemite + refers to results after data
augmentation.

of these models (for example, in surveillance settings) are in
question considering the challenges of illumination changes,
pose, appearance changes[25, 15]. The proposed NCC based
matching layer in our approach is designed to be inherently
tolerant to illumination changes. Hence, the addition of such
an explicit matching scheme might help to overcome the
effect of illumination challenges.

Face Recognition can be viewed as the matching of local
parts (eyes, nose, mouth etc) using which the similarity at
a global level is determined. Hence, the combination of the
proposed matching layer which identifies similar regions
through a search in a local neighborhood and a convolutional
framework which learns a global context seems to be aptly
applicable for Face Recognition.

SCface Dataset[16]: The dataset contains face images
of 130 subjects that are captured by 5 surveillance cameras
placed at different distances. A few sample gallery and probe
images are given in supplementary material due to space con-

straints. Following the protocol from [27, 28], we randomly
split the dataset into 50 subjects for fine-tuning the deep
learning models and the remaining 80 subjects for testing;
hence, there is no overlap between the training and testing
subjects. The procedure to combine the proposed NCC based
matching layer with VGGFace and OpenFace is described in
the supplementary material in detail. The addition of NCC
layer with the popular methods increases their performances.
While the performance of VGGFace improves marginally, it
improves that of OpenFace’s significantly.

Method Rank-1 (%)

VGGFace+NCC 82.75

OpenFace+NCC 80.5

VGGFace(FC7)[30] 82.5

OpenFace[3] 7.5

DictAlignFR[28] 73.25

LowResFR[27] 69.45

Table 5: Rank-1 performance of various methods in SCface
database

5. Conclusion
In this paper, we have demonstrated how a robust match-

ing technique such as Normalized Cross Correlation can
be coupled with CNN based architectures to learn a better
patch-matcher. Two architectures were proposed which were
trained by a simple cross-entropy measure. The proposed
models yield good performance on the challenging UBC
Patches dataset[12]. We also showed how the models are
robust to large illumination changes and Face Recognition.
Experiments on two illumination-based tests showed that
the proposed models perform well even when significant
illumination changes occur. It will be interesting to propose
a method of extracting descriptors for the given patches by
distilling the knowledge contained in the proposed models.
We also intend to study the applicability of the proposed
patch-matchers in high-level tasks such as 3-D Reconstruc-
tion, Tracking, and Recognition.
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